Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019:1886:163-189.
doi: 10.1007/978-1-4939-8894-5_9.

Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations

Affiliations

Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations

Fidan Sumbul et al. Methods Mol Biol. 2019.

Abstract

The mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe, and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulations as a computational microscope allow investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy experiments using AFM, including sample preparation, measurements, and analysis and interpretation of the resulting dynamic force spectrum in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging computational tools with experimental techniques.

Keywords: Atomic force microscopy; Dynamic force spectroscopy; Receptor–ligand interactions; Steered molecular dynamics simulations.

PubMed Disclaimer

MeSH terms

LinkOut - more resources