Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul;56(7):4639-4652.
doi: 10.1007/s12035-018-1404-2. Epub 2018 Oct 29.

Removal of p75 Neurotrophin Receptor Expression from Cholinergic Basal Forebrain Neurons Reduces Amyloid-β Plaque Deposition and Cognitive Impairment in Aged APP/PS1 Mice

Affiliations

Removal of p75 Neurotrophin Receptor Expression from Cholinergic Basal Forebrain Neurons Reduces Amyloid-β Plaque Deposition and Cognitive Impairment in Aged APP/PS1 Mice

Lei Qian et al. Mol Neurobiol. 2019 Jul.

Abstract

The degeneration of cholinergic basal forebrain (cBF) neurons in Alzheimer's disease (AD) leads to the cognitive impairment associated with this condition. cBF neurons express the p75 neurotrophin receptor (p75NTR), which mediates cell death, and the extracellular domain of p75NTR can bind to amyloid beta (Aβ) and promote its degradation. Here, we investigated the contribution of cBF neuronal p75NTR to the progression of AD by removing p75NTR from cholinergic neurons in the APP/PS1 familial AD mouse strain. Conditional loss of p75NTR slowed cognitive decline and reduced both Aβ accumulation into plaques and gliosis. Expression of the amyloid protein precursor and its cleavage enzymes ADAM10 and BACE1 were unchanged. There was also no upregulation of p75NTR in non-cholinergic cell types. This indicates that a direct interaction between cBF-expressed p75NTR and Aβ does not contribute significantly to the regulation of Aβ load. Rather, loss of p75NTR from cBF neurons, which results in increased cholinergic innervation of the cortex, appears to regulate alternative, more dominant, Aβ clearance mechanisms.

Keywords: Alzheimer’s disease; Amyloid plaque; Cholinergic basal forebrain; Cognitive impairment; Conditional knockout; p75 extracellular domain; p75 neurotrophin receptor.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Whitehouse PJ, Struble RG, Clark AW, Price DL (1982) Alzheimer disease: plaques, tangles, and the basal forebrain. Ann Neurol 12(5):494. https://doi.org/10.1002/ana.410120517 - DOI - PubMed
    1. Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ (2014) Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol 261(10):1939–1948. https://doi.org/10.1007/s00415-014-7439-z - DOI - PubMed
    1. Grothe M, Heinsen H, Teipel S (2013) Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer’s disease. Neurobiol Aging 34(4):1210–1220. https://doi.org/10.1016/j.neurobiolaging.2012.10.018 - DOI - PubMed
    1. Mufson EJ, Ma SY, Dills J, Cochran EJ, Leurgans S, Wuu J, Bennett DA, Jaffar S et al (2002) Loss of basal forebrain p75NTR immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol 443(2):136–153 - DOI
    1. Schmitz TW, Nathan Spreng R, Alzheimer’s Disease Neuroimaging I (2016) Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer’s pathology. Nat Commun 7:13249. https://doi.org/10.1038/ncomms13249 - DOI - PubMed - PMC

LinkOut - more resources