Deep learning to predict microscope images
- PMID: 30377365
- PMCID: PMC6322918
- DOI: 10.1038/s41592-018-0194-9
Deep learning to predict microscope images
Abstract
A species of neural network first described in 2015 can be trained to translate between images of the same field of view acquired by different modalities. Trained networks can use information inherent in grayscale images of cells to predict fluorescent signals.
Figures


Comment on
-
Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy.Nat Methods. 2018 Nov;15(11):917-920. doi: 10.1038/s41592-018-0111-2. Epub 2018 Sep 17. Nat Methods. 2018. PMID: 30224672 Free PMC article.
References
-
- Christiansen EM, Yang SJ, Ando DM, Javaherian A, Skibinski G, Lipnick S, Mount E, O’Neil A, Shah K, Lee AK, Goyal P, Fedus W, Poplin R, Esteva A, Berndl M, Rubin LL, Nelson P, and Finkbeiner S (2018). In silico labeling: predicting fluorescent labels in unlabeled images. Cell. 173(3), 792–803 - PMC - PubMed
-
- Rosenblatt F (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review. 65, 386–408. - PubMed
-
- McCulloch WS, and Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133. - PubMed
-
- Minsky M, and Papert S (1969) Perceptrons: An Introduction to Computational Geometry, MIT Press, Cambridge Massachusetts.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources