Genome-Based Prediction of Bacterial Antibiotic Resistance
- PMID: 30381421
- PMCID: PMC6425178
- DOI: 10.1128/JCM.01405-18
Genome-Based Prediction of Bacterial Antibiotic Resistance
Abstract
Clinical microbiology has long relied on growing bacteria in culture to determine antimicrobial susceptibility profiles, but the use of whole-genome sequencing for antibiotic susceptibility testing (WGS-AST) is now a powerful alternative. This review discusses the technologies that made this possible and presents results from recent studies to predict resistance based on genome sequences. We examine differences between calling antibiotic resistance profiles by the simple presence or absence of previously known genes and single-nucleotide polymorphisms (SNPs) against approaches that deploy machine learning and statistical models. Often, the limitations to genome-based prediction arise from limitations of accuracy of culture-based AST in addition to an incomplete knowledge of the genetic basis of resistance. However, we need to maintain phenotypic testing even as genome-based prediction becomes more widespread to ensure that the results do not diverge over time. We argue that standardization of WGS-AST by challenge with consistently phenotyped strain sets of defined genetic diversity is necessary to compare the efficacy of methods of prediction of antibiotic resistance based on genome sequences.
Keywords: antibiotic resistance; genome-based prediction.
Copyright © 2019 Su et al.
Figures

References
-
- Centers for Disease Control and Prevention. 2013. Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, Atlanta, GA: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.
-
- Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MTG, Hopkins KL, Iredell J, Kahlmeter G, Köser CU, MacGowan A, Mevius D, Mulvey M, Naas T, Peto T, Rolain J-M, Samuelsen Ø, Woodford N. 2017. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST subcommittee. Clin Microbiol Infect 23:2–22. doi:10.1016/j.cmi.2016.11.012. - DOI - PubMed
-
- Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TEA, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063. doi:10.1038/ncomms10063. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical