Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 21;57(52):17161-17167.
doi: 10.1002/anie.201811403. Epub 2018 Nov 28.

Asymmetric Total Synthesis of Brasilicardins

Affiliations
Free article

Asymmetric Total Synthesis of Brasilicardins

Fumihiko Yoshimura et al. Angew Chem Int Ed Engl. .
Free article

Erratum in

Abstract

Brasilicardins, bacterial diterpenoid natural products that display highly potent immunosuppressive activity, are promising immunosuppressant drug candidates. Structurally, they can be described as hybrids of terpenoids, amino acids, and saccharides, and share a characteristic highly strained anti-syn-anti-fused perhydrophenanthrene terpenoid scaffold (ABC-ring system) with two quaternary asymmetric carbon atoms. A unified and stereoselective total synthesis of all four brasilicardins has been designed based on the strategic use of an intramolecular conjugate addition. The ABC-ring system was initially constructed with high stereocontrol by novel intramolecular conjugate additions of Weinreb amides and in situ generated (Z)-vinyl copper species. The late-stage common intermediate was subjected to stereoselective installation of the amino acid component, followed by introduction of the saccharide unit via glycosylation to accomplish the total synthesis of brasilicardins A-D. Our synthesis offers opportunities to synthesize various brasilicardin analogues for biological and pharmacological investigations.

Keywords: Michael addition; brasilicardins; natural products; quaternary stereocenters; total synthesis.

PubMed Disclaimer

Publication types

MeSH terms