Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jan 30:168:45-52.
doi: 10.1016/j.ecoenv.2018.10.022. Epub 2018 Oct 25.

Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge

Affiliations
Review

Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge

Xingdong Wang et al. Ecotoxicol Environ Saf. .

Abstract

Textile dyeing sludge (TDS) was pyrolyzed at temperature ranging from 300 to 700 °C to investigate characteristics and to evaluate the risk of heavy metals (Zn, Cu, Cr, Ni, Cd, and Mn) in biochar derived from the TDS. The analyzation of characteristics and potential environmental risk evaluation of heavy metals were conducted by the BET-N2, FTIR, and BCR sequential extraction procedure. The results showed that the pyrolysis treatment of the TDS contributed to the improvement of the pH value and specific surface areas with increasing pyrolysis temperature. Conversion of the TDS to biochar significantly decreased the H/C and O/C ratios, resulting in a far stronger carbonization and a higher aromatic condensation for the TDS derived biochar. The total contents of Zn, Cu, Cr, Ni and Mn in biochar increased with pyrolysis temperature owing to the thermal decomposition of organic matter in the TDS; but for Cd, the portion distributed in the biochars decreased significantly when the temperature increased up to 600 °C. However, using BCR sequential extraction procedure and analysis, it was found that pyrolysis process promoted changes in the chemical speciation and biochar matrix characteristics, leading to reduce bio-available fractions of heavy metals in the biochars. The potential environmental risk of heavy metals decreased from considerable risk in the TDS to low risk or no risk in biochar after pyrolysis above 400 °C. This work demonstrated that the pyrolysis process was a promising method for disposing of the TDS with acceptable environment risk.

Keywords: Biochar; Chemical speciation; Heavy metals; Pyrolysis; Textile dyeing sludge.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources