Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 26;81(11):2470-2482.
doi: 10.1021/acs.jnatprod.8b00524. Epub 2018 Nov 2.

Insulin Mimetic Activity of 3,4- Seco and Hexanordammarane Triterpenoids Isolated from Gynostemma longipes

Affiliations

Insulin Mimetic Activity of 3,4- Seco and Hexanordammarane Triterpenoids Isolated from Gynostemma longipes

Ha Thanh Tung Pham et al. J Nat Prod. .

Abstract

As part of ongoing research to find new antidiabetic agents from medicinal plants, the chemical composition of Gynostemma longipes, an ethnomedicinal plant used to treat type 2 diabetes mellitus by local communities in Vietnam, was investigated. Ten new dammarane triterpenes, including two 3,4- seco-dammarane analogues, secolongipegenins S1 and S2 (1 and 2), a 3,4- seco-hexanordammarane, secolongipegenin S3 (3), two hexanordammarane glycosides, longipenosides ND1 and ND2 (4 and 5), and five other dammarane glycosides, longipenosides GL1-GL5 (6-10), were isolated from a 70% EtOH extract of the whole G. longipes plant. The structures of the new compounds were elucidated using diverse spectroscopic methods. All of the isolates were evaluated for their stimulatory activities on glucose uptake in differentiated 3T3-L1 adipocyte cells using 2-[ N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose as a fluorescent-tagged glucose probe. The stimulant activities on glucose uptake by the test compounds were mediated via the activation of the AMPK pathway using differentiated mouse C2C12 skeletal myoblasts. Consequently, compounds 1, 2, and 4 enhanced glucose uptake and GLUT4 translocation significantly by regulating the AMPK signaling pathway.

PubMed Disclaimer

Publication types