Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 1:148:306-313.
doi: 10.1016/j.watres.2018.10.010. Epub 2018 Oct 9.

N-nitrosomorpholine in potable reuse

Affiliations
Free article

N-nitrosomorpholine in potable reuse

Caitlin M Glover et al. Water Res. .
Free article

Abstract

As potable reuse guidelines and regulations continue to develop, the presence of N-nitrosamines is a primary concern because of their associated health concerns. In this study, bench-, pilot-, and full-scale tests were conducted to focus on the occurrence and treatment of N-nitrosomorpholine (NMOR) in United States (U.S.) potable reuse systems. Out of twelve U.S. wastewater effluents collected, ambient NMOR was detected in eleven (average = 20 ± 18 ng/L); in contrast, only two of the thirteen surface water and stormwater samples had NMOR. Across all of these samples maximum formation potential by chloramination produced an average increase of 3.6 ± 1.8 ng/L. This result underscores the need to understand the sources of NMOR as it is not likely a disinfection byproduct and it is not known to be commercially produced within the U.S. At the pilot-scale, three potable reuse systems were evaluated for ambient NMOR with oxidation (i.e., chlorination and ozonation), biofiltration, and granular activated carbon (GAC). Both pre-oxidation and biofiltration were ineffective at mitigating NMOR during long-term pilot plant operation (at least eight-months). GAC adsorbers were the only pilot-scale treatment to remove NMOR; however, complete breakthrough occurred rapidly from <2000 to 10,000 bed volumes. For comparison, a full-scale reverse osmosis (RO) potable reuse system was monitored for a year and confirmed that RO effectively removes NMOR. Systematic bench-scale UV-advanced oxidation experiments were undertaken to assess the mitigation potential for NMOR. At a fluence dose of 325 ± 10 mJ/cm2, UV alone degraded 90% of the NMOR present. The addition of 5 mg/L hydrogen peroxide did not significantly decrease the UV dose required for one-log removal. These data illustrate that efficient NMOR removal from potable reuse systems is limited to RO or UV treatment.

Keywords: Advanced treatment; Biological activated carbon; Granular activated carbon; N-nitrosomorpholine; Ozonation; Potable reuse; Reverse osmosis; UV photolysis.

PubMed Disclaimer

Publication types

LinkOut - more resources