Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar;51(3):383-393.
doi: 10.1007/s00726-018-2673-9. Epub 2018 Nov 3.

Dilipid ultrashort cationic lipopeptides as adjuvants for chloramphenicol and other conventional antibiotics against Gram-negative bacteria

Affiliations

Dilipid ultrashort cationic lipopeptides as adjuvants for chloramphenicol and other conventional antibiotics against Gram-negative bacteria

Ronald Domalaon et al. Amino Acids. 2019 Mar.

Abstract

The necessity to develop therapeutic agents and strategies to abate the spread of antibiotic-resistant pathogens is prominent. Antimicrobial peptides (AMPs) provide scaffolds and inspiration for antibiotic development. As an AMP of shorter scaffold, eight dilipid ultrashort cationic lipopeptides (dUSCLs) were prepared consisting of only four amino acids and varying dilipids. Lipids were acylated at the peptide N-terminus and the ε-amine side chain of the N-terminal L-lysine. Compounds that possess aliphatic dilipids of ≥ 11 carbons-long showed significant hemolysis and therefore limited therapeutic application. Several non-hemolytic dUSCLs were identified to enhance the activity of chloramphenicol and other conventional antibiotics against Gram-negative bacteria. Compounds 2 and 6 have a short peptide sequence of KKKK and KKGK, respectively, and are both acylated with an aliphatic dilipid of nine carbons-long potentiated chloramphenicol against MDR clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacteriaceae. Both dUSCLs showed comparable adjuvant potency in combination with chloramphenicol. However, dUSCL 2 synergized with a wider span of antibiotic classes against P. aeruginosa relative to dUSCL 6 that included rifampicin, trimethoprim, minocycline, fosfomycin, piperacillin, ciprofloxacin, levofloxacin, moxifloxacin, linezolid and vancomycin. Our data revealed that dUSCLs can indirectly disrupt active efflux of chloramphenicol in P. aeruginosa. This along with their membrane-permeabilizing properties may explain the dUSCLs synergistic combination with conventional antibiotics against Gram-negative bacteria.

Keywords: Adjuvant; Antimicrobial peptide; Chloramphenicol; Combination therapy; Dilipid ultrashort cationic lipopeptides; Synergy.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources