Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 1;20(7):872-876.
doi: 10.1002/cbic.201800590. Epub 2019 Jan 16.

The Emerging Role of Tetrazines in Drug-Activation Chemistries

Affiliations

The Emerging Role of Tetrazines in Drug-Activation Chemistries

Kevin Neumann et al. Chembiochem. .

Abstract

Traditionally, prodrug activation has been limited to enzymatic triggers or gross physiological aberrations, such as pH, that offer low selectivity and control over dosage. In recent years, the field of prodrug activation chemistry has been transformed by the use of bioorthogonal reactions that can be carried out under biological conditions at sub-millimolar concentrations, with the tetrazine-mediated inverse electron demand Diels-Alder reaction amongst the most recognised. Their high reaction rates, chemoselectivity and excellent biocompatibility make tetrazines ideal small molecules for activating prodrugs. Recently the tetrazine moiety has been used as a prodrug for a pyridazine thus broadening the scope of prodrug systems. This article discusses the concept of using tetrazines as small-molecule activators for prodrugs, and provides an overview of tetrazine-based prodrug systems, with a particular focus on the recently reported prodrug-prodrug activation strategy.

Keywords: bioorthogonal reactions; chemical biology; drug delivery; prodrugs; tetrazine.

PubMed Disclaimer

Publication types

LinkOut - more resources