Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 5;9(1):4619.
doi: 10.1038/s41467-018-06014-6.

CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language

Lot Snijders Blok  1   2   3 Justine Rousseau  4 Joanna Twist  5 Sophie Ehresmann  4 Motoki Takaku  5 Hanka Venselaar  6 Lance H Rodan  7 Catherine B Nowak  7 Jessica Douglas  7 Kathryn J Swoboda  8 Marcie A Steeves  9 Inderneel Sahai  9 Connie T R M Stumpel  10 Alexander P A Stegmann  10 Patricia Wheeler  11 Marcia Willing  12 Elise Fiala  12 Aaina Kochhar  13 William T Gibson  14   15 Ana S A Cohen  14   15 Ruky Agbahovbe  14   15 A Micheil Innes  16 P Y Billie Au  16 Julia Rankin  17 Ilse J Anderson  18 Steven A Skinner  19 Raymond J Louie  19 Hannah E Warren  19 Alexandra Afenjar  20 Boris Keren  21   22 Caroline Nava  21   22   23 Julien Buratti  21 Arnaud Isapof  24 Diana Rodriguez  25 Raymond Lewandowski  26 Jennifer Propst  26 Ton van Essen  27 Murim Choi  28 Sangmoon Lee  28 Jong H Chae  29 Susan Price  30 Rhonda E Schnur  31 Ganka Douglas  31 Ingrid M Wentzensen  31 Christiane Zweier  32 André Reis  32 Martin G Bialer  33 Christine Moore  33 Marije Koopmans  34 Eva H Brilstra  34 Glen R Monroe  34 Koen L I van Gassen  34 Ellen van Binsbergen  34 Ruth Newbury-Ecob  35 Lucy Bownass  35 Ingrid Bader  36 Johannes A Mayr  37 Saskia B Wortmann  37   38   39 Kathy J Jakielski  40 Edythe A Strand  41 Katja Kloth  42 Tatjana Bierhals  42 DDD studyJohn D Roberts  5 Robert M Petrovich  5 Shinichi Machida  43 Hitoshi Kurumizaka  43 Stefan Lelieveld  1 Rolph Pfundt  1 Sandra Jansen  1   3 Pelagia Deriziotis  2 Laurence Faivre  44   45 Julien Thevenon  44   45 Mirna Assoum  44   45 Lawrence Shriberg  46 Tjitske Kleefstra  1   3 Han G Brunner  1   3   10 Paul A Wade  5 Simon E Fisher  47   48 Philippe M Campeau  49   50
Collaborators, Affiliations

CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language

Lot Snijders Blok et al. Nat Commun. .

Erratum in

  • Author Correction: CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language.
    Blok LS, Rousseau J, Twist J, Ehresmann S, Takaku M, Venselaar H, Rodan LH, Nowak CB, Douglas J, Swoboda KJ, Steeves MA, Sahai I, Stumpel CTRM, Stegmann APA, Wheeler P, Willing M, Fiala E, Kochhar A, Gibson WT, Cohen ASA, Agbahovbe R, Innes AM, Au PYB, Rankin J, Anderson IJ, Skinner SA, Louie RJ, Warren HE, Afenjar A, Keren B, Nava C, Buratti J, Isapof A, Rodriguez D, Lewandowski R, Propst J, van Essen T, Choi M, Lee S, Chae JH, Price S, Schnur RE, Douglas G, Wentzensen IM, Zweier C, Reis A, Bialer MG, Moore C, Koopmans M, Brilstra EH, Monroe GR, van Gassen KLI, van Binsbergen E, Newbury-Ecob R, Bownass L, Bader I, Mayr JA, Wortmann SB, Jakielski KJ, Strand EA, Kloth K, Bierhals T; DDD study; Roberts JD, Petrovich RM, Machida S, Kurumizaka H, Lelieveld S, Pfundt R, Jansen S, Deriziotis P, Faivre L, Thevenon J, Assoum M, Shriberg L, Kleefstra T, Brunner HG, Wade PA, Fisher SE, Campeau PM. Blok LS, et al. Nat Commun. 2019 Feb 15;10(1):883. doi: 10.1038/s41467-019-08800-2. Nat Commun. 2019. PMID: 30770872 Free PMC article.
  • Author Correction: CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language.
    Snijders Blok L, Rousseau J, Twist J, Ehresmann S, Takaku M, Venselaar H, Rodan LH, Nowak CB, Douglas J, Swoboda KJ, Steeves MA, Sahai I, Stumpel CTRM, Stegmann APA, Wheeler P, Willing M, Fiala E, Kochhar A, Gibson WT, Cohen ASA, Agbahovbe R, Innes AM, Au PYB, Rankin J, Anderson IJ, Skinner SA, Louie RJ, Warren HE, Afenjar A, Keren B, Nava C, Buratti J, Isapof A, Rodriguez D, Lewandowski R, Propst J, van Essen T, Choi M, Lee S, Chae JH, Price S, Schnur RE, Douglas G, Wentzensen IM, Zweier C, Reis A, Bialer MG, Moore C, Koopmans M, Brilstra EH, Monroe GR, van Gassen KLI, van Binsbergen E, Newbury-Ecob R, Bownass L, Bader I, Mayr JA, Wortmann SB, Jakielski KJ, Strand EA, Kloth K, Bierhals T; DDD study; Roberts JD, Petrovich RM, Machida S, Kurumizaka H, Lelieveld S, Pfundt R, Jansen S, Deriziotis P, Faivre L, Thevenon J, Assoum M, Shriberg L, Kleefstra T, Brunner HG, Wade PA, Fisher SE, Campeau PM. Snijders Blok L, et al. Nat Commun. 2019 May 2;10(1):2079. doi: 10.1038/s41467-019-10161-9. Nat Commun. 2019. PMID: 31048695 Free PMC article.

Abstract

Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Photographs of affected individuals. Facial photographs showing dysmorphisms in 18 individuals with de novo CHD3 mutations. The majority of individuals have macrocephaly with a prominent or bossing forehead, individual 5 has microcephaly. Hypertelorism or telecanthus is common, often accompanied by narrow palpebral fissures, deep-set eyes, peri-orbital fullness, and/or epicanthal folds. The combination of macrocephaly and deep-set eyes leads to a more prominent supra-orbital ridge. Some individuals show midface hypoplasia. Many individuals have low-set ears that can be posteriorly rotated, and sometimes simple with thick helices. A broad nasal base, prominent nose, a bifid nasal tip, and characteristic pointy chin is also frequently seen, as well as laterally sparse eyebrows
Fig. 2
Fig. 2
Schematic view of CHD3 transcript and protein with de novo mutations. a Schematic view of CHD3 exons (transcript 1, NM_001005273.2) with the splice site mutation c.4073-2A>G shown that most likely leads to skipping of exon 27 (22 amino acids), while preserving the reading frame. Exon 27 is part of the beginning of the second DUF domain (DUF 1086). Colors of the domains in a match with colors of domains in b and c. Five different types of domains are specified: plant homeodomains (PHD), chromodomains (Chromo), a Helicase domain consisting of two parts (Helicase ATP-binding and Helicase C-terminal), domains of unknown function (DUF), and a C-terminal 2 domain. b Schematic view of linear CHD3 protein (transcript 1, NM_001005273.2) with all mutations, except for the splice site mutation that is shown in a, found in our cohort. Almost all missense mutations cluster in or around the Helicase domain of the CHD3 protein. c Overview of one of the two CHD3-models used in this study, based on the 3MWY protein structure. This figure shows the different domains of the protein in their three-dimensional conformation: chromo domain 1 494–595 (magenta), chromo domain 2 631–673 (red), helicase ATP binding domain (yellow), helicase C-terminal domain (green), ATP binding residues 761–768 (cyan). ATP is orange, and gray residues do not belong to an indicated domain. Colors of the domains in c match with colors of domains in a and b. d The same structure as c, but in this figure the positions of the mutated residues are indicated in red, the sidechains of these residues are shown as red balls. The ATP molecule is shown in yellow. This figure illustrates the clustering of mutations on specific sites within the Helicase ATP-binding domain and Helicase C-terminal domain. A more detailed analysis of the different missense mutations in our cohort can be found in Supplementary Note 1
Fig. 3
Fig. 3
ATPase assays. Radiometric ATPase assays were performed to assess the activity of the mutant proteins relative to wild-type, in the presence of recombinant nucleosomes (blue), dsDNA (green), or in the absence of DNA substrates as a control (Supplementary Fig. 4). Released phosphate was separated from unhydrolyzed ATP by thin layer chromatography, and detected by exposure to a phosphorimager. The experimental values (percentage hydrolyzed ATP) for the different mutant conditions were normalized to values for the wild-type condition within the experiment, to derive a normalized ATPase activity. The experimental data are presented as means ± standard deviation, individual data points are shown as red triangles. Three independent experiments from two individual purifications (wild-type, p.Leu915Phe, p.Arg1121Pro, p.Asn1159Lys, p.Arg1172Gln, and p.Arg1187Pro) (N = 6) or one purification (p.Trp1158Arg) (N = 3) were performed. Raw values from the individual experiments can be found in Supplementary Data 2. Asterisk (*) indicates significant difference for mutant values compared to wild-type values (unpaired t-test, P < 0.05) within the same substrate condition
Fig. 4
Fig. 4
Restriction enzyme accessibility assay. a Restriction enzyme accessibility analysis of CHD3 wild-type and mutant proteins. 3.125, 6.25, or 12.5 nM of CHD3 proteins were incubated with 347 bp mono-nucleosomes. Digested fragments were analyzed by native polyacrylamide gel. b Quantitative analysis of restriction enzyme accessibility. Three individual experiments from two individual purifications (wild-type, p.Leu915Phe, p.Arg1121Pro, p.Asn1159Lys, p.Arg1172Gln, and p.Arg1187Pro) (N = 6) or one purification (p.Trp1158Arg) (N = 3) were conducted. The experimental data are presented as means with standard deviations

References

    1. Marfella CG, Imbalzano AN. The Chd family of chromatin remodelers. Mutat. Res. 2007;618:30–40. doi: 10.1016/j.mrfmmm.2006.07.012. - DOI - PMC - PubMed
    1. Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21:396–420. doi: 10.1038/cr.2011.32. - DOI - PMC - PubMed
    1. Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010;463:474–484. doi: 10.1038/nature08911. - DOI - PMC - PubMed
    1. Carvill GL, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat. Genet. 2013;45:825–830. doi: 10.1038/ng.2646. - DOI - PMC - PubMed
    1. Vissers LE, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 2004;36:955–957. doi: 10.1038/ng1407. - DOI - PubMed

Publication types

MeSH terms

Substances