Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 1;60(2):376-392.
doi: 10.1093/pcp/pcy217.

Longevity of Preserved Germplasm: The Temperature Dependency of Aging Reactions in Glassy Matrices of Dried Fern Spores

Affiliations

Longevity of Preserved Germplasm: The Temperature Dependency of Aging Reactions in Glassy Matrices of Dried Fern Spores

Daniel Ballesteros et al. Plant Cell Physiol. .

Abstract

This study explores the temperature dependency of the aging rate in dry cells over a broad temperature range encompassing the fluid to solid transition (Tg) and well below. Spores from diverse species of eight families of ferns were stored at temperatures ranging from +45�C to approximately -176�C (vapor phase above liquid nitrogen), and viability was monitored periodically for up to 4,300 d (∼12 years). Accompanying measurements using differential scanning calorimetry (DSC) provide insights into structural changes that occur, such as Tg between +45 and -20�C (depending on moisture), and triacylglycerol (TAG) crystallization between -5 and -35�C (depending on species). We detected aging even at cryogenic temperatures, which we consider analogous to unscheduled degradation of pharmaceuticals stored well below Tg caused by a shift in the nature of molecular motions that dominate chemical reactivity. We occasionally observed faster aging of spores stored at -18�C (conventional freezer) compared with 5�C (refrigerator), and linked this with mobility and crystallization within TAGs, which probably influences molecular motion of dried cytoplasm in a narrow temperature range. Temperature dependency of longevity was remarkably similar among diverse fern spores, despite widely disparate aging rates; this provides a powerful tool to predict deterioration of germplasm preserved in the solid state. Future work will increase our understanding of molecular organization and composition contributing to differences in longevity.

Keywords: Cryopreservation; Differential scanning calorimetry; Ex situ conservation; Moisture; Molecular mobility; Triacylglycerol.

PubMed Disclaimer

LinkOut - more resources