Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 8;58(1):36-39.
doi: 10.1021/acs.biochem.8b00844. Epub 2018 Nov 12.

Reductive Cleavage of Sulfoxide and Sulfone by Two Radical S-Adenosyl-l-methionine Enzymes

Affiliations

Reductive Cleavage of Sulfoxide and Sulfone by Two Radical S-Adenosyl-l-methionine Enzymes

Dhanaraju Mandalapu et al. Biochemistry. .

Abstract

Sulfoxides and sulfones are commonly found in nature as a result of thioether oxidation, whereas only a very few enzymes have been found to metabolize these compounds. Utilizing the strong reduction potential of the [4Fe-4S] cluster of radical S-adenosyl-l-methionine (SAM) enzymes, we herein report the first enzyme-catalyzed reductive cleavage of sulfoxide and sulfone. We show two radical SAM enzymes, tryptophan lyase NosL and the class C radical SAM methyltransferase NosN, are able to act on a sulfoxide SAHO and a sulfone SAHO2, both of which are structurally similar to SAM. NosL cleaves all of the three bonds (i.e., S-C(5'), S-C(γ), and S-O) connecting the sulfur center of SAHO, with a preference for S-C(5') bond cleavage. Similar S-C cleavage activity was also found for SHAO2, but no S-O cleavage was observed. In contrast to NosL, NosN almost exclusively cleaves the S-C(5') bonds of SAHO and SAHO2 with much higher efficiencies. Our study provides valuable insights into the [4Fe-4S] cluster-mediated reduction reactions and highlights the remarkable catalytic promiscuity of radical SAM enzymes.

PubMed Disclaimer

Similar articles

Cited by

  • Functional Diversity of HemN-like Proteins.
    Cheng J, Liu WQ, Zhu X, Zhang Q. Cheng J, et al. ACS Bio Med Chem Au. 2022 Jan 18;2(2):109-119. doi: 10.1021/acsbiomedchemau.1c00058. eCollection 2022 Apr 20. ACS Bio Med Chem Au. 2022. PMID: 37101745 Free PMC article. Review.

Publication types

MeSH terms

LinkOut - more resources