Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 1:126:160-169.
doi: 10.1016/j.bios.2018.10.049. Epub 2018 Oct 26.

An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles

Affiliations

An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles

Raji Atchudan et al. Biosens Bioelectron. .

Abstract

In this work, an ultra-sensing photoelectrochemical (PEC) glucose biosensor has been constructed from the bio-derived nitrogen-doped carbon sheets (NDC) wrapped titanium dioxide nanoparticles (NDC-TiO2 NPs) followed by the covalent immobilization of glucose oxidase (GODx) on them (designated as a GODx/NDC-TiO2NPs/ITO biosensor). Initially, the TiO2 NPs was synthesized by sol-gel method and then NDC-TiO2 NPs was synthesized utilizing a green source of Prunus persica (peach fruit) through a simple hydrothermal process. The synthesized NDC-TiO2 NPs composite was characterized by FESEM, HRTEM, Raman spectroscopy, XRD, ATR-FTIR spectroscopy and XPS to determine composition and phase purity. These fabricated GODx/NDC-TiO2NPs/ITO biosensor exhibited a good charge separation, highly enhanced and stable photocurrent responses with switching PEC behavior under the light (λ > 400 nm). As a result, GODx/NDC-TiO2NPs/ITO PEC glucose sensor exhibits a good photocurrent response to detection of glucose concentrations (0.05-10 μM) with an ultra-low detection limit of 13 nM under optimized PEC experimental conditions. Also, the PEC glucose sensor revealed a high selectivity, good stability, long time durability, and capability to analyze the glucose levels in real human serum. Also, the further development of this work may provide new insights into preparing other bio-derived carbon nanostructure-based photocatalysts for PEC applications.

Keywords: Glucose biosensor; Hydrothermal; Peach fruit; Photoelectrochemistry; Sol-gel; Titanium dioxide.

PubMed Disclaimer

LinkOut - more resources