Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct;89(10):104703.
doi: 10.1063/1.5048700.

Electrostatic design and conditioning of a triple point junction shield for a -200 kV DC high voltage photogun

Affiliations

Electrostatic design and conditioning of a triple point junction shield for a -200 kV DC high voltage photogun

G Palacios-Serrano et al. Rev Sci Instrum. 2018 Oct.

Abstract

Nuclear physics experiments performed at the Continuous Electron Beam Accelerator Facility (CEBAF) at the Jefferson Lab require a DC high voltage photogun to generate polarized electron beams from GaAs photocathodes. The photogun uses a tapered ceramic insulator that extends into the vacuum chamber and mechanically holds the cathode electrode. Increasing the operating voltage from nominal -130 kV to -200 kV will provide lower beam emittance, better transmission through injector apertures, and improved photocathode lifetime. This desire to increase the photogun operating voltage led to the design of a triple-point-junction shield electrode which minimizes the electric field at the delicate insulator-metal-vacuum interface and linearizes the potential across the insulator, thus reducing the risk of arcing along the ceramic insulator. This work describes the results obtained using COMSOL® electrostatic-field simulation software and presents the high voltage conditioning results of the upgraded -200 kV CEBAF photogun.

PubMed Disclaimer

LinkOut - more resources