Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug 20;902(2):200-6.
doi: 10.1016/0005-2736(87)90296-3.

Effect of oxygen free radicals on ubiquinone in aqueous solution and phospholipid vesicles

Effect of oxygen free radicals on ubiquinone in aqueous solution and phospholipid vesicles

L Landi et al. Biochim Biophys Acta. .

Abstract

The purpose of this study was to evaluate the direct effect of oxygen free radicals produced by ultrasonic irradiation on ubiquinone and to compare the efficiency with which the antioxidant can compete with these radicals when it is both in aqueous solution and within the lipid bilayer. The main product obtained after insonation of aqueous solutions of ubiquinone-0 was ubiquinol, moreover some degradation occurred. The direct electron donor responsible for most of the ubiquinol generated by ultrasonic irradiation appeared to be superoxide radical. Addition reactions of hydroxyl radicals with aromatic ring structure led probably to degradation products of ubiquinone, which were not identified. Experiments were also performed to evaluate the efficiency with which ubiquinone-3 could react with oxygen radicals when it was within the lipid bilayer. The effect of presence or absence of a net surface charge was studied selecting a suitable bilayer including dimyristylphosphatidic acid or stearylamine in uncharged dimyristylphosphatidylcholine vesicles. In these systems hydroxyl radicals did not represent a potential danger for the antioxidant, the reaction between superoxide and ubiquinone-3 instead was significant only in positively charged membranes and gave rise to ubiquinol. It is suggested that ubiquinone acts as an antioxidant by stopping the propagation reaction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources