Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug 13;925(2):210-7.
doi: 10.1016/0304-4165(87)90111-5.

Regulation of fructose 2,6-bisphosphate levels in Neurospora crassa

Regulation of fructose 2,6-bisphosphate levels in Neurospora crassa

V A Dumbrava et al. Biochim Biophys Acta. .

Abstract

Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-bisphosphate at levels of 27 nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-bisphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-bisphosphate. Thus, the above-described regulation of fructose 2,6-bisphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-bisphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-bisphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-bisphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-bisphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources