Fe3+ Facilitates Endocytic Internalization of Extracellular Aβ1-42 and Enhances Aβ1-42-Induced Caspase-3/Caspase-4 Activation and Neuronal Cell Death
- PMID: 30402707
- DOI: 10.1007/s12035-018-1408-y
Fe3+ Facilitates Endocytic Internalization of Extracellular Aβ1-42 and Enhances Aβ1-42-Induced Caspase-3/Caspase-4 Activation and Neuronal Cell Death
Abstract
Amyloid β (Aβ) peptide is a critical causative factor in Alzheimer's disease (AD) and of a variety of fragmented Aβ peptides Aβ1-42 thought to exhibit the most neurotoxic effect. The present study investigated the effects of Fe3+ on Aβ1-42 internalization and Aβ1-42-induced caspase activation and neurotoxicity using mouse hippocampal slices and cultured PC-12 cells. Extracellularly applied Aβ1-42 increased the cell-associated Aβ1-42 levels in a concentration-dependent manner, and the effect was enhanced by adding Fe3+. Fe3+-induced enhancement of the cell-associated Aβ1-42 levels was significantly inhibited by the endocytosis inhibitors dynasore and methyl-β-cyclodextrin. Aβ1-42 reduced PC-12 cell viability in a concentration-dependent manner, and further reduction of the cell viability was obtained with Fe3+. Aβ1-42-induced reduction of cell viability was not affected by A187, an antagonist of amylin-3 receptor. Aβ1-42 activated caspase-3, caspase-4, and caspase-8 to a variety of degrees and Fe3+ further enhanced Aβ1-42-induced activation of caspase-3 and caspase-4. Taken together, these results indicate that Fe3+ accelerates endocytic internalization of extracellular Aβ1-42, enhances Aβ1-42-induced caspase-3/caspase-4 activation, and promotes Aβ1-42-induced neuronal cell death, regardless of amylin receptor.
Keywords: Amyloid β1–42; Caspase activation; Endocytosis; Fe3+; Internalization; Neuronal cell death.
References
-
- Tomita T (2017) Aberrant proteolytic processing and therapeutic strategies in Alzheimer disease. Adv Biol Regul 64:33–38 - PubMed
-
- Attems J, Quass M, Jellinger KA, Lintner F (2007) Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are influenced by Alzheimer disease pathology. J Neurol Sci 257(1–2):49–55 - PubMed
-
- Wirths O, Multhaup G, Bayer TA (2004) A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide - the first step of a fatal cascade. J Neurochem 91(3):513–520 - PubMed
-
- Mochizuki A, Tamaoka A, Shimohata A, Komatsuzaki Y, Shoji S (2000) Aβ42-positive non-pyramidal neurons around amyloid plaques in Alzheimer’s disease. Lancet 355(9197):42–43 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
