A systematic knowledge synthesis on the spatial dimensions of Q fever epidemics
- PMID: 30402920
- PMCID: PMC7379662
- DOI: 10.1111/zph.12534
A systematic knowledge synthesis on the spatial dimensions of Q fever epidemics
Abstract
From 2007 through 2010, the Netherlands experienced the largest Q fever epidemic ever reported. This study integrates the outcomes of a multidisciplinary research programme on spatial airborne transmission of Coxiella burnetii and reflects these outcomes in relation to other scientific Q fever studies worldwide. We have identified lessons learned and remaining knowledge gaps. This synthesis was structured according to the four steps of quantitative microbial risk assessment (QMRA): (a) Rapid source identification was improved by newly developed techniques using mathematical disease modelling; (b) source characterization efforts improved knowledge but did not provide accurate C. burnetii emission patterns; (c) ambient air sampling, dispersion and spatial modelling promoted exposure assessment; and (d) risk characterization was enabled by applying refined dose-response analyses. The results may support proper and timely risk assessment and risk management during future outbreaks, provided that accurate and structured data are available and exchanged readily between responsible actors.
Keywords: Coxiella burnetii; Q fever; airborne exposure; epidemiology; risk assessment; spatial analysis.
© 2018 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.
Conflict of interest statement
No conflict of interests to declare.
Figures
Similar articles
-
Screening-level risk assessment of Coxiella burnetii (Q fever) transmission via aeration of drinking water.Environ Sci Technol. 2012 Apr 3;46(7):4125-33. doi: 10.1021/es203744g. Epub 2012 Feb 29. Environ Sci Technol. 2012. PMID: 22309101
-
Detection of Coxiella burnetii in Ambient Air after a Large Q Fever Outbreak.PLoS One. 2016 Mar 18;11(3):e0151281. doi: 10.1371/journal.pone.0151281. eCollection 2016. PLoS One. 2016. PMID: 26991094 Free PMC article.
-
Remarkable spatial variation in the seroprevalence of Coxiella burnetii after a large Q fever epidemic.BMC Infect Dis. 2017 Nov 21;17(1):725. doi: 10.1186/s12879-017-2813-y. BMC Infect Dis. 2017. PMID: 29157226 Free PMC article.
-
Clinical microbiology of Coxiella burnetii and relevant aspects for the diagnosis and control of the zoonotic disease Q fever.Vet Q. 2013;33(3):148-60. doi: 10.1080/01652176.2013.843809. Epub 2013 Oct 28. Vet Q. 2013. PMID: 24161079 Review.
-
The Importance of Ticks in Q Fever Transmission: What Has (and Has Not) Been Demonstrated?Trends Parasitol. 2015 Nov;31(11):536-552. doi: 10.1016/j.pt.2015.06.014. Epub 2015 Oct 11. Trends Parasitol. 2015. PMID: 26458781 Review.
Cited by
-
Comparison of test performance of a conventional PCR and two field-friendly tests to detect Coxiella burnetii DNA in ticks using Bayesian latent class analysis.Front Vet Sci. 2024 Jun 19;11:1396714. doi: 10.3389/fvets.2024.1396714. eCollection 2024. Front Vet Sci. 2024. PMID: 38962707 Free PMC article.
-
Metabarcoding analysis of the microbiota in flocks naturally infected by Coxiella burnetii: First description of the global microbiota in domestic small ruminants.One Health. 2025 Feb 19;20:100996. doi: 10.1016/j.onehlt.2025.100996. eCollection 2025 Jun. One Health. 2025. PMID: 40093541 Free PMC article.
-
Tracking the Source of Human Q Fever from a Southern French Village: Sentinel Animals and Environmental Reservoir.Microorganisms. 2023 Apr 13;11(4):1016. doi: 10.3390/microorganisms11041016. Microorganisms. 2023. PMID: 37110439 Free PMC article.
-
A Deterministic Model for Q Fever Transmission Dynamics within Dairy Cattle Herds: Using Sensitivity Analysis and Optimal Controls.Comput Math Methods Med. 2020 Jan 31;2020:6820608. doi: 10.1155/2020/6820608. eCollection 2020. Comput Math Methods Med. 2020. PMID: 32089730 Free PMC article.
-
Insights into Livestock-Related Microbial Concentrations in Air at Residential Level in a Livestock Dense Area.Environ Sci Technol. 2019 Jul 2;53(13):7746-7758. doi: 10.1021/acs.est.8b07029. Epub 2019 May 13. Environ Sci Technol. 2019. PMID: 31081619 Free PMC article.
References
-
- Alvarez, J. , Perez, A. , Mardones, F. O. , Pérez‐Sancho, M. , García‐Seco, T. , Pagés, E. , … Dominguez, L. (2012). Epidemiological factors associated with the exposure of cattle to Coxiella burnetii in the Madrid region of Spain. The Veterinary Journal, 194, 102–107. - PubMed
-
- Arricau Bouvery, N. , Souriau, A. , Lechopier, P. , & Rodolakis, A. (2003). Experimental Coxiella burnetii infection in pregnant goats: Excretion routes. Veterinary Research, 34, 423–433. - PubMed
-
- Biggs, H. M. , Turabelidze, G. , Pratt, D. , Todd, S. R. , Jacobs‐Slifka, K. , Drexler, N. A. , … Anderson, A. (2016). Coxiella burnetii infection in a community operating a large‐scale cow and goat dairy, Missouri, 2013. American Journal of Tropical Medicine and Hygiene, 94, 525–531. 10.4269/ajtmh.15-0726 - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources