Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;95(3):901-908.
doi: 10.1111/php.13047. Epub 2018 Nov 28.

Photo-Fenton and Riboflavin-photosensitized Processes of the Isoxaflutole Herbicide

Affiliations

Photo-Fenton and Riboflavin-photosensitized Processes of the Isoxaflutole Herbicide

Eduardo Gatica et al. Photochem Photobiol. 2019 May.

Abstract

The proherbicide Isoxaflutole (IXF) hydrolyzes spontaneously to diketonitrile (DKN) a phytotoxic compound with herbicidal activity. In this work, the sensitized degradation of IXF using Riboflavin (Rf), a typical environmentally friendly sensitizer, Fenton and photo-Fenton processes has been studied. The results indicate that only the photo-Fenton process produces a significant degradation of the IXF. Photolysis experiments of IXF sensitized by Riboflavin is not a meaningful process, IXF quenches the Rf excited triplet (3 Rf*) state with a quenching rate constant of 1.5 · 107 m-1 s-1 and no reaction is observed with the species O2 (1 Δg ) or O 2 · - generated from 3 Rf*. The Fenton reaction produces no changes in the IXF concentration. While the photo-Fenton process of the IXF, under typical conditions, it produces a degradation of 99% and a mineralization to CO2 and H2 O of 88%. A rate constant value of 1.0 × 109 m-1 s-1 was determined for the reaction between IXF and HO˙. The photo-Fenton process degradation products were identified by UHPLC-MS/MS analysis.

PubMed Disclaimer

Publication types