n→π* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins
- PMID: 30403347
- PMCID: PMC6527516
- DOI: 10.1021/jacs.8b09701
n→π* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins
Abstract
Noncovalent interactions are ubiquitous in biology, taking on roles that include stabilizing the conformation of and assembling biomolecules, and providing an optimal environment for enzymatic catalysis. Here, we describe a noncovalent interaction that engages the sulfur atoms of cysteine residues and disulfide bonds in proteins-their donation of electron density into an antibonding orbital of proximal amide carbonyl groups. This n→ π* interaction tunes the reactivity of the CXXC motif, which is the critical feature of thioredoxin and other enzymes involved in redox homeostasis. In particular, an n→ π* interaction lowers the p Ka value of the N-terminal cysteine residue of the motif, which is the nucleophile that initiates catalysis. In addition, the interplay between disulfide n→ π* interactions and C5 hydrogen bonds leads to hyperstable β-strands. Finally, n→ π* interactions stabilize vicinal disulfide bonds, which are naturally diverse in function. These previously unappreciated n→ π* interactions are strong and underlie the ability of cysteine residues and disulfide bonds to engage in the structure and function of proteins.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






Similar articles
-
Role of individual cysteine residues and disulfide bonds in the structure and function of Aspergillus ribonucleolytic toxin restrictocin.Biochemistry. 1999 Aug 3;38(31):10052-8. doi: 10.1021/bi990222d. Biochemistry. 1999. PMID: 10433712
-
The disulfide oxidoreductase SdbA is active in Streptococcus gordonii using a single C-terminal cysteine of the CXXC motif.Mol Microbiol. 2016 Jan;99(2):236-53. doi: 10.1111/mmi.13227. Epub 2015 Oct 30. Mol Microbiol. 2016. PMID: 26395460
-
Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.FEBS J. 2006 Sep;273(18):4170-85. doi: 10.1111/j.1742-4658.2006.05421.x. Epub 2006 Aug 23. FEBS J. 2006. PMID: 16930136 Review.
-
Identity and functions of CxxC-derived motifs.Biochemistry. 2003 Sep 30;42(38):11214-25. doi: 10.1021/bi034459s. Biochemistry. 2003. PMID: 14503871
-
Control of mature protein function by allosteric disulfide bonds.Antioxid Redox Signal. 2011 Jan 1;14(1):113-26. doi: 10.1089/ars.2010.3620. Epub 2010 Oct 28. Antioxid Redox Signal. 2011. PMID: 20831445 Review.
Cited by
-
Skeletal Ring Contractions via I(I)/I(III) Catalysis: Stereoselective Synthesis of cis-α,α-Difluorocyclopropanes.ACS Catal. 2022 Dec 2;12(23):14507-14516. doi: 10.1021/acscatal.2c04511. Epub 2022 Nov 10. ACS Catal. 2022. PMID: 36504915 Free PMC article.
-
Hydrogen Bonds and n → π* Interactions in the Acetylation of Propranolol Catalyzed by Candida antarctica Lipase B: A QTAIM Study.ACS Omega. 2021 Aug 3;6(32):20992-21004. doi: 10.1021/acsomega.1c02559. eCollection 2021 Aug 17. ACS Omega. 2021. PMID: 34423207 Free PMC article.
-
Discovery and pharmacophoric characterization of chemokine network inhibitors using phage-display, saturation mutagenesis and computational modelling.Nat Commun. 2023 Sep 16;14(1):5763. doi: 10.1038/s41467-023-41488-z. Nat Commun. 2023. PMID: 37717048 Free PMC article.
-
The next generation of biopanning: next gen sequencing improves analysis of bacterial display libraries.BMC Biotechnol. 2019 Dec 21;19(1):100. doi: 10.1186/s12896-019-0577-8. BMC Biotechnol. 2019. PMID: 31864334 Free PMC article.
-
Context-Dependence of the Reactivity of Cysteine and Lysine Residues.Chembiochem. 2022 Jul 19;23(14):e202200258. doi: 10.1002/cbic.202200258. Epub 2022 Jun 1. Chembiochem. 2022. PMID: 35527228 Free PMC article.
References
-
- Wall JS Disulfide bonds: Determination, location, and influence on molecular properties of proteins. J. Agr. Food Chem 1971, 19, 619–625. - PubMed
- Benham CJ; Jafri MS Disulfide bonding patterns and protein topologies. Protein Sci. 1993, 1, 41–54. - PMC - PubMed
- Chivers PT; Prehoda KE; Raines RT The CXXC motif: A rheostat in the active site. Biochemistry 1997, 36, 4061–4066. - PubMed
- Woycechowsky KJ; Raines RT Native disulfide bond formation in proteins. Curr. Opin. Chem. Biol 2000, 4, 533–539. - PMC - PubMed
- Schmidt B; Ho L; Hogg PJ Allosteric disulfide bonds. Biochemistry 2006, 45, 7429–7433. - PubMed
- Pace NJ; Weerapana E Diverse functional roles of reactive cysteines. ACS Chem. Biol 2013, 8, 283–296. - PubMed
- Góngora-Benítez M; Tulla-Puche J; Albericio F Mutlifacted roles of disulfide bonds: Peptides as therapeutics. Chem. Rev 2013, 114, 901–926. - PubMed
- Paulsen CE; Carroll KS Cysteine-mediated redox signaling: Chemistry, biology and tools for discovery. Chem. Rev 2013, 113, 4633–4679. - PMC - PubMed
- Go Y-M; Jones DP The redox proteome. J. Biol. Chem 2013, 288, 26512–26520. - PMC - PubMed
- Skryhan K; Cuesta-Siejo JA; Nielsen MM; Marri L; Mellor SB; Glaring MA; Jensen PE; Palcic MM; Blennow A The role of cysteine residues in redox regulation and protein stability of Arabidopsis thaliana starch synthase 1. PLoS ONE 2015, 10, e0136997. - PMC - PubMed
- Majmudar JD; Konopko AM; Labby KJ; Tom CT; Crellin JE; Prakash A; Martin BR Harnessing redox cross-reactivity to profile distinct cysteine modifications. J. Am. Chem. Soc 2016, 136, 1852–1859. - PMC - PubMed
- Manteca A; Alonso-Caballero Á; Fertin M; Poly S; De Sancho D; Perez-Jimenez R The influence of disulfide bonds on the mechanical stability of proteins is context dependent. J. Biol. Chem 2017, 292, 13374–13380. - PMC - PubMed
-
- Burns JA; Whitesides GM Predicting the stability of cyclic disulfides by molecular modeling: “Effective Concentrations” in thiol–disulfide interchange and the design of strongly reducing dithiols. J. Am. Chem. Soc 1990, 112, 6296–6303.
- Klink TA; Woycechowsky KJ; Taylor KM; Raines RT Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A. Eur. J. Biochem 2000, 267, 566–572. - PubMed
- Kucharski TJ; Huang Z; Yang Q-Z; Tian Y; Rubin NC; Concepcion CD; Boulatove R Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew. Chem., Int. Ed 2009, 48, 7040–7043. - PubMed
- Dopieralski P; Ribas-Arino J; Anjukandi P; Krupicka M; Kiss J; Marx D The Janus-faced role of external forces in the mechanochemical disulfide bond cleavage. Nat. Chem 2013, 5, 685–691. - PubMed
-
- Martelli PL; Fariselli P; Casadio R Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network. Proteomics 2004, 4, 1665–1671. - PubMed
-
- Clauss AD; Nelsen SF; Ayoub M; Moore JW; Landis CR; Weinhold F Rabbit-ears hybrids, VSEPR sterics, and other orbital anachronisms. Chem. Educ. Res. Pract 2014, 15, 417–434.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous