The highly conserved domain of RND multidrug efflux pumps in pathogenic Gram-negative bacteria
- PMID: 30403600
The highly conserved domain of RND multidrug efflux pumps in pathogenic Gram-negative bacteria
Abstract
RND (Resistance-Nodulation-Division) family transporters have a vital role in both intrinsic and acquired multi-drug resistance in Gram-negative bacteria. It is important to find a conserved domain in the RND family between different pathogenic bacteria for diagnostic and therapeutic purpose. Total sequences of three-component system RND efflux pumps were retrieved from NCBI nucleotide and protein database and were subjected to conservation and variation analysis using the multiple sequence alignment feature of the CLC workbench. The phylogenetic tree for main transporters was drawn and the three-dimensional structure was also evaluated. From the sequence conservation analysis, highly conserved residues with 282 base pair (94 amino acid) long were identified. The location of the highly conserved domain is positioned in the domain 1 crystallographic structure of AcrB Escherichia coli and MexB Pseudomonas aeruginosa. The main transporter component phylogenetic tree shows the clusters of different genotypes and their evolutionary association. Each of three components of RND proteins is crucial for drug efflux, and the absence of even one component makes the entire complex totally nonfunctional. Therefore, this highly conserved region can be used to disable the RND multidrug efflux pumps. In addition, this highly conserved can also be used for diagnostic aspects.
Keywords: Conserved domain; Gram-negative bacteria.; RND multidrug efflux pumps.
Similar articles
-
Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria.J Bacteriol. 2002 Dec;184(23):6499-507. doi: 10.1128/JB.184.23.6499-6507.2002. J Bacteriol. 2002. PMID: 12426337 Free PMC article.
-
Molecular mechanisms of AcrB-mediated multidrug export.Res Microbiol. 2018 Sep-Oct;169(7-8):372-383. doi: 10.1016/j.resmic.2018.05.005. Epub 2018 May 25. Res Microbiol. 2018. PMID: 29807096 Review.
-
The hydrophobic trap-the Achilles heel of RND efflux pumps.Res Microbiol. 2018 Sep-Oct;169(7-8):393-400. doi: 10.1016/j.resmic.2017.11.001. Epub 2017 Nov 13. Res Microbiol. 2018. PMID: 29146106 Free PMC article. Review.
-
Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update.Curr Opin Microbiol. 2009 Oct;12(5):512-9. doi: 10.1016/j.mib.2009.07.003. Epub 2009 Aug 5. Curr Opin Microbiol. 2009. PMID: 19664953 Review.
-
RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance.Future Microbiol. 2020 Jan;15:143-157. doi: 10.2217/fmb-2019-0235. Epub 2020 Feb 19. Future Microbiol. 2020. PMID: 32073314 Review.
Cited by
-
Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa.Int J Mol Sci. 2022 Dec 13;23(24):15779. doi: 10.3390/ijms232415779. Int J Mol Sci. 2022. PMID: 36555423 Free PMC article. Review.
-
Decoding MexB efflux pump genes: structural, molecular, and phylogenetic analysis of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa.Front Cell Infect Microbiol. 2025 Jan 21;14:1519737. doi: 10.3389/fcimb.2024.1519737. eCollection 2024. Front Cell Infect Microbiol. 2025. PMID: 39906216 Free PMC article.
-
From Proteome to Potential Drugs: Integration of Subtractive Proteomics and Ensemble Docking for Drug Repurposing against Pseudomonas aeruginosa RND Superfamily Proteins.Int J Mol Sci. 2024 Jul 23;25(15):8027. doi: 10.3390/ijms25158027. Int J Mol Sci. 2024. PMID: 39125594 Free PMC article.
-
The frequency of efflux pump genes expression in Acinetobacter baumannii isolates from pulmonary secretions.AMB Express. 2022 Aug 4;12(1):103. doi: 10.1186/s13568-022-01444-4. AMB Express. 2022. PMID: 35925415 Free PMC article.
-
Computational Evaluation of Fusarium nygamai Compounds as AcrD Efflux Pump Protein Inhibitors of Salmonella Typhimurium.Mol Biotechnol. 2024 Dec 21. doi: 10.1007/s12033-024-01329-w. Online ahead of print. Mol Biotechnol. 2024. PMID: 39709333