Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 1:122:833-843.
doi: 10.1016/j.ijbiomac.2018.11.005. Epub 2018 Nov 4.

Synthesis, characterization and biomedical applications of a novel Schiff base on methyl acrylate-functionalized chitosan bearing p-nitrobenzaldehyde groups

Affiliations

Synthesis, characterization and biomedical applications of a novel Schiff base on methyl acrylate-functionalized chitosan bearing p-nitrobenzaldehyde groups

El-Refaie Kenawy et al. Int J Biol Macromol. .

Abstract

Amino-functionalization has gained significant attention in the chemical modification of carbohydrate polymers due to their potential biomedical applications. Here, the preparation of innovative functionalized chitosan bearing amino-containing groups and equipped with p-nitrobenzaldehyde groups, resulting in an aminated chitosan bearing p-nitrobenzaldehyde (AmCs-pNBA) was described for the first time. The most important advantage of the chitosan functionalization was the success of its preparation at room temperature, avoiding the polymerization of methyl acrylate and instead it reacted entirely with chitosan. The resulting methyl acrylate chitosan was subsequently improved by the synthesized AmCs-pNBA Schiff base via the condensation of aldehyde groups with aminated chitosan. The structural characteristics of AmCs-pNBA were examined by FT-IR, XRD, TGA, SEM, and elemental analysis techniques. The antimicrobial, antioxidant, and anti-biofilm activities of AmCs-pNBA were assessed in vitro. The results revealed that this newly synthesized chitosan derivative displayed significant superior antibacterial, antioxidant, and anti-biofilm activities over the original chitosan. Besides, cytotoxicity and hemolytic analysis of the AmCs-pNBA were also evaluated. Results indicated that AmCs-pNBA support cell viability and proliferation without obvious hemolysis. These results show the potential of synthesizing the novel biomaterial candidate, AmCs-pNBA, with improved antibacterial, anti-biofilm, and antioxidant properties that may open a new perspective in biomedical applications.

Keywords: Chitosan; Chitosan Schiff base; Pharmaceutical applications.

PubMed Disclaimer

MeSH terms

LinkOut - more resources