Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug 25;262(24):11539-45.

Characterization of vasoactive intestinal peptide receptors by a photoaffinity label. Site-specific modification of vasoactive intestinal peptide by derivatization of the receptor-bound peptide

  • PMID: 3040706
Free article

Characterization of vasoactive intestinal peptide receptors by a photoaffinity label. Site-specific modification of vasoactive intestinal peptide by derivatization of the receptor-bound peptide

A Robichon et al. J Biol Chem. .
Free article

Abstract

The biological effects of vasoactive intestinal peptide (VIP) are mediated by binding to a membrane-bound receptor. Probes designed to trap this receptor by binding to it in a covalent way may suffer from a greatly reduced affinity. We report here, for the VIP receptor, the use of a photoaffinity probe obtained by derivatization of receptor-bound VIP with para-azidophenylglyoxal. This method protected the parts of the molecule essential for receptor binding. The VIP derivative thus obtained became covalently linked when irradiated. In the dark, however, it exhibited normal VIP-like behavior and retained its biological activity. This derivatization method might be generally applicable when hormone analogues have to be prepared without loss of receptor affinity. Receptor characterization studies on liver plasma membranes showed the presence of high- and low-affinity binding sites with KD = 0.1 and 5 nM, respectively. Treatment of membranes with dithiothreitol causes loss of high-affinity binding. The high-affinity site, trapped by the photoaffinity probe, resolved into two molecular mass forms, 50 and 200-250 kDa. Reduction of the receptor-probe complex left the 50-kDa form intact, whereas the amount of the 200-250-kDa form greatly diminished. We demonstrate the importance of the presence of disulfide bonds in one of the molecular forms involved in high-affinity binding.

PubMed Disclaimer

LinkOut - more resources