Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 1;165(2):177-184.
doi: 10.1093/jb/mvy092.

Revealing of a novel xylose-binding site of Geobacillus stearothermophilus xylanase by directed evolution

Affiliations

Revealing of a novel xylose-binding site of Geobacillus stearothermophilus xylanase by directed evolution

Usama M Hegazy et al. J Biochem. .

Abstract

Xylan saccharification is a key step in many important biotechnological applications. Xylose is the main product of xylan degradation and is a major xylanase inhibitor in a bioreactor; however, xylose-binding site of xylanase is not discovered yet. Evolving of xylose-tolerant xylanase variants will reduce the cost of xylanases in industry. Glycoside hydrolase family-10 thermostable Geobacillus stearothermophilus xylanase XT6 is non-competitively inhibited by xylose with inhibition constant ki equals to 12.2 mM. In the absence of X-ray crystallography of xylanase-xylose complex, unbiased random mutagenesis of the whole xylanase gene was done by error-prone polymerase chain reaction constructing a huge library. Screening a part of the library revealed xylose-tolerant mutants having three mutations, M116I, L131P and L133V, clustered in the N-terminus of α-helix 3. The best xylose-tolerant mutant showed higher ki and catalytic capability than that of the parent by 3.5- and 3-fold, respectively. In addition, kcat increased 4.5-fold and KM decreased 2-fold. The molecular docking of xylose into xylanase XT6 structure showed that xylose binds into a small pocket between N-terminus of α-helices 3 and 4 and close to the three mutations. Mobility of α-helices 3 and 4, which controls catalysis rate, is restricted by xylose binding and increased by these mutations.

PubMed Disclaimer

MeSH terms

LinkOut - more resources