Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb;63(1):27-32.
doi: 10.1111/1754-9485.12828. Epub 2018 Nov 8.

Computer vs human: Deep learning versus perceptual training for the detection of neck of femur fractures

Affiliations

Computer vs human: Deep learning versus perceptual training for the detection of neck of femur fractures

Matthew Adams et al. J Med Imaging Radiat Oncol. 2019 Feb.

Abstract

Introduction: To evaluate the accuracy of deep convolutional neural networks (DCNNs) for detecting neck of femur (NoF) fractures on radiographs, in comparison with perceptual training in medically-naïve individuals.

Methods: This study extends a previous study that conducted perceptual training in medically-naïve individuals for the detection of NoF fractures on a variety of dataset sizes. The same anteroposterior hip radiograph dataset was used to train two DCNNs (AlexNet and GoogLeNet) to detect NoF fractures. For direct comparison with perceptual training results, deep learning was completed across a variety of dataset sizes (200, 320 and 640 images) with images split into training (80%) and validation (20%). An additional 160 images were used as the final test set. Multiple pre-processing and augmentation techniques were utilised.

Results: AlexNet and GoogLeNet DCNNs NoF fracture detection accuracy increased with larger training dataset sizes and mildly with augmentation. Accuracy increased from 81.9% and 88.1% to 89.4% and 94.4% for AlexNet and GoogLeNet respectively. Similarly, the test accuracy for the perceptual training in top-performing medically-naïve individuals increased from 87.6% to 90.5% when trained on 640 images compared with 200 images.

Conclusions: Single detection tasks in radiology are commonly used in DCNN research with their results often used to make broader claims about machine learning being able to perform as well as subspecialty radiologists. This study suggests that as impressive as recognising fractures is for a DCNN, similar learning can be achieved by top-performing medically-naïve humans with less than 1 hour of perceptual training.

Keywords: X-rays; femoral neck fractures; learning; radiology; supervised machine learning.

PubMed Disclaimer

LinkOut - more resources