Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 8;18(1):552.
doi: 10.1186/s12879-018-3451-8.

An adult autosomal recessive chronic granulomatous disease patient with pulmonary Aspergillus terreus infection

Affiliations

An adult autosomal recessive chronic granulomatous disease patient with pulmonary Aspergillus terreus infection

Esmaeil Mortaz et al. BMC Infect Dis. .

Abstract

Background: Genetic mutations that reduce intracellular superoxide production by granulocytes causes chronic granulomatous disease (CGD). These patients suffer from frequent and severe bacterial and fungal infections throughout their early life. Diagnosis is usually made in the first 2 years of life but is sometimes only diagnosed when the patient is an adult although they may have suffered from symptoms since childhood.

Case presentation: A 26-year-old man was referred with weight loss, fever, hepatosplenomegaly and coughing. He had previously been diagnosed with lymphadenopathy in the neck at age 8 and prescribed anti-tuberculosis treatment. A chest radiograph revealed extensive right-sided consolidation along with smaller foci of consolidation in the left lung. On admission to hospital he had respiratory problems with fever. Laboratory investigations including dihydrorhodamine-123 (DHR) tests and mutational analysis indicated CGD. Stimulation of his isolated peripheral blood neutrophils (PMN) with phorbol 12-myristate 13-acetate (PMA) produced low, subnormal levels of reactive oxygen species (ROS). Aspergillus terreus was isolated from bronchoalveolar lavage (BAL) fluid and sequenced.

Conclusions: We describe, for the first time, the presence of pulmonary A. terreus infection in an adult autosomal CGD patient on long-term corticosteroid treatment. The combination of the molecular characterization of the inherited CGD and the sequencing of fungal DNA has allowed the identification of the disease-causing agent and the optimal treatment to be given as a consequence.

Keywords: Aspergillus terreus; CGD; Pulmonary infection.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Patient consent for case report publication in journal and has signed consent form.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Lung imaging. a. There is extensive consolidation in the right lung (red arrow). Scattered patches of consolidation in the left lung are also seen (green arrow). Chest CT scans show the lung window at the level of the pulmonary artery (b) and heart (c). Note extensive consolidation in the right upper lobe (red arrow b). There are also smaller patches of consolidation in the right lower and middle lobes and in the left lung (green arrows b and c)
Fig. 2
Fig. 2
Dihydrorhodamine-1,2,3 (DHR) analysis of reactive oxygen species generation by peripheral blood neutrophils. Patient and healthy control cells were incubated with DHR (375 ng/ml), with or without PMA (100 ng/ml), and ROS generation was assayed by FACS analysis. The mean fluorescent intensity (MFI) of the following groups are indicated in the figure: Red lines represent cells from unstimulated healthy controls and patient cells, blue line represents PMA-stimulated patient cells, and grey line represents and PMA-stimulated healthy control cells
Fig. 3
Fig. 3
Microbiological culture of lung fungal species obtained by bronchoscopy. a 7-day-old culture on sabouraud dextrose agar at 30 °C shows light yellow to brownish colonies. b Fungal growth after 12 days sterile culture on potato dextrose agar (PDA) plates for sporulation and identification, and LPCB mounting slide showing details of hyphae and the accessory conidia. c Septate and hyaline hyphae with biseriate phialides extending from the upper portion of the vesicle and covering 2/3 of the plate
Fig. 4
Fig. 4
a Partial sequence of the putative invertase gene from Aspergillus terreus isolated from the patient. This is compared to the sequence of the ‘standard’ A. terreus sp. (b)

Similar articles

Cited by

References

    1. Barlogis V, Suarez F, Lanternier F, et al. Epidemiology and outcome of invasive fungal diseases in patients with chronic granulomatous disease: a multicenter study in France. Pediatr Infect Dis J. 2011;30:57–62. doi: 10.1097/INF.0b013e3181f13b23. - DOI - PubMed
    1. Blumental S, Mouy R, Mahlaoui N, Bougnoux ME, Debré M, Beauté J, Lortholary O, Blanche S, Fischer A. Invasive mold infections in chronic granulomatous disease: a 25-year retrospective survey. Clin Infect Dis. 2011;53:e159–e169. doi: 10.1093/cid/cir731. - DOI - PubMed
    1. Marciano BE, Spalding C, Fitzgerald A, Mann D, Brown T, Osgood S, Yockey L, Darnell DN, Barnhart L, Daub J, et al. Common severe infections in chronic granulomatous disease. Clin Infect Dis. 2015;60:1176–1183. doi: 10.1093/cid/ciu1154. - DOI - PMC - PubMed
    1. Meischl C, Roos D. The molecular basis of chronic granulomatous disease. Springer Semin Immunopathol. 1998;19:417–434. doi: 10.1007/BF00792600. - DOI - PubMed
    1. Winkelstein JA, Marino MC, Johnston RB, Boyle J, Curnutte J, Gallin JI, Malech HL, Holland SM, Ochs H, Quie P. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 2000;79:155–169. doi: 10.1097/00005792-200005000-00003. - DOI - PubMed

MeSH terms