Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr;24(4):484-490.
doi: 10.1038/s41380-018-0289-9.

Genetics of response to cognitive behavior therapy in adults with major depression: a preliminary report

Affiliations

Genetics of response to cognitive behavior therapy in adults with major depression: a preliminary report

Evelyn Andersson et al. Mol Psychiatry. 2019 Apr.

Abstract

Major depressive disorder is heritable and a leading cause of disability. Cognitive behavior therapy is an effective treatment for major depression. By quantifying genetic risk scores based on common genetic variants, the aim of this report was to explore the utility of psychiatric and cognitive trait genetic risk scores, for predicting the response of 894 adults with major depressive disorder to cognitive behavior therapy. The participants were recruited in a psychiatric setting, and the primary outcome score was measured using the Montgomery Åsberg Depression Rating Scale-Self Rated. Single-nucleotide polymorphism genotyping arrays were used to calculate the genomic risk scores based on large genetic studies of six phenotypes: major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, autism spectrum disorder, intelligence, and educational attainment. Linear mixed-effect models were used to test the relationships between the six genetic risk scores and cognitive behavior therapy outcome. Our analyses yielded one significant interaction effect (B = 0.09, p < 0.001): the autism spectrum disorder genetic risk score correlated with Montgomery Åsberg Depression Rating Scale-Self Rated changes during treatment, and the higher the autism spectrum disorder genetic load, the less the depressive symptoms decreased over time. The genetic risk scores for the other psychiatric and cognitive traits were not related to depressive symptom severity or change over time. Our preliminary results indicated, as expected, that the genomics of the response of patients with major depression to cognitive behavior therapy were complex and that future efforts should aim to maximize sample size and limit subject heterogeneity in order to gain a better understanding of the use of genetic risk factors to predict treatment outcome.

PubMed Disclaimer

Conflict of interest statement

PFS reports the following potentially competing financial interests: Current, Lundbeck (advisory committee, grant recipient); Past three years, Pfizer (scientific advisory board), Element Genomics (consultation fee), and Roche (speaker reimbursement). Remaining authors declare no financial interests or potential conflicts of interest.

Figures

Fig. 1
Fig. 1
Effects of ASD GRS (at a p-value threshold of 0.05) on MADRS-S scores during iCBT treatment. The figure shows the predicted MADRS-S score for every week during treatment for three different levels of the ASD GRS (25th, 50th, and 75th percentiles). The shaded areas show the 95% confidence intervals of the predicted values. The participants with the highest ASD GRS scores (blue) showed poorer responses to treatment vs. those with average (green) or low (red) ASD GRS scores. Abbreviations: autism spectrum disorder (ASD), genetic risk score (GRS), Montgomery Åsberg Depression rating scale-Self (MADRS-S), internet-delivered cognitive behavior therapy (iCBT)

References

    1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R) JAMA. 2003;289:3095–105. doi: 10.1001/jama.289.23.3095. - DOI - PubMed
    1. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119–38. doi: 10.1146/annurev-publhealth-031912-114409. - DOI - PMC - PubMed
    1. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157:1552–62. doi: 10.1176/appi.ajp.157.10.1552. - DOI - PubMed
    1. Levinson DF, Mostafavi S, Milaneschi Y, Rivera M, Ripke S, Wray NR, et al. Genetic studies of major depressive disorder: why are there no genome-wide association study findings and what can we do about it? Biol Psychiatry. 2014;76:510–2. doi: 10.1016/j.biopsych.2014.07.029. - DOI - PMC - PubMed
    1. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81. - PMC - PubMed

Publication types