Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 1:231:1-9.
doi: 10.1016/j.jep.2018.11.013. Epub 2018 Nov 8.

Mycetia cauliflora methanol extract exerts anti-inflammatory activity by directly targeting PDK1 in the NF-κB pathway

Affiliations

Mycetia cauliflora methanol extract exerts anti-inflammatory activity by directly targeting PDK1 in the NF-κB pathway

Seong-Gu Jeong et al. J Ethnopharmacol. .

Abstract

Ethnopharmacological relevance: Mycetia cauliflora Reinw. (Rubiaceae) has been used as a traditional remedy to ameliorate clinical signs of inflammatory diseases, including pain, inflammation, ulcers, and wounds. Among the Mycetia subfamilies, the molecular and cellular mechanisms of Mycetia longifolia (Rubiaceae) have been studied. However, those of Mycetia cauliflora are not clearly understood. Comprehensive investigation of this plant is necessary to evaluate its potential for ethnopharmacological use.

Materials: and methods: The activities of Mycetia cauliflora methanol extract (Mc-ME) on the secretion of inflammatory mediators, the mRNA expression of proinflammatory cytokines, and identification of its molecular targets were elucidated using lipopolysaccharide (LPS)-induced macrophage-like cells. Moreover, the suppressive actions of Mc-ME were examined in an LPS-induced peritonitis mouse model.

Results: At nontoxic concentrations, Mc-ME downregulated the release of nitric oxide (NO), the mRNA expression of inducible nitric oxide synthase (iNOS), and the mRNA expression of interleukin (IL)-1β from LPS-activated RAW264.7 cells. This extract also inhibited the nuclear translocation of p65 and p50 and the phosphorylation of IκBα, IKK, and AKT. Western blot analysis and in vitro kinase assays confirmed that phosphoinositide-dependent kinase-1 (PDK1) is the direct immunopharmacological target of Mc-ME effect. In addition, Mc-ME significantly reduced inflammatory signs in an animal model of acute peritonitis. These effects were associated with decreased NO production and decreased AKT phosphorylation.

Conclusion: Our results suggest that Mc-ME displays anti-inflammatory actions in LPS-treated macrophage-like cells and in an animal model of acute inflammatory disease. These actions are preferentially managed by targeting PDK1 in the nuclear factor (NF)-κB signaling pathway.

Keywords: Anti-inflammatory activity; Mycetia cauliflora; N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME); NF-κB; PDK1; Peritonitis; Prednisolone; Quercetin.

PubMed Disclaimer

MeSH terms

LinkOut - more resources