Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec;14(51):e1804321.
doi: 10.1002/smll.201804321. Epub 2018 Nov 12.

Enzymatic Reaction Generates Biomimic Nanominerals with Superior Bioactivity

Affiliations

Enzymatic Reaction Generates Biomimic Nanominerals with Superior Bioactivity

Ying-Ying Jiang et al. Small. 2018 Dec.

Abstract

In vivo mineralization is a multistep process involving mineral-protein complexes and various metastable compounds in vertebrates. In this complex process, the minerals produced in the mitochondrial matrix play a critical role in initiating extracellular mineralization. However, the functional mechanisms of the mitochondrial minerals are still a mystery. Herein, an in vitro enzymatic reaction strategy is reported for the generation of biomimic amorphous calcium phosphate (EACP) nanominerals by an alkaline phosphatase (ALP)-catalyzed hydrolysis of adenosine triphosphate (ATP) in a weakly alkalescent aqueous condition (pH 8.0-8.5), which is partially similar to the mitochondrial environment. Significantly, the EACP nanomineral obviously promotes autophagy and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by activating an AMPK related pathway, and displays a high performance in promoting bone regeneration. These results provide in vitro evidence for the effect of ATP on the formation and stabilization of the mineral in the mineralization process, demonstrating a potential strategy for the preparation of the biomimic mineral for treating bone related diseases.

Keywords: autophagy; biomineral; bone repair; enzymatic reaction; osteogenic differentiation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources