Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;68(1):95-104.
doi: 10.1099/jmm.0.000869. Epub 2018 Nov 12.

Molecular characterization of Staphylococcus argenteus in Myanmar: identification of novel genotypes/clusters in staphylocoagulase, protein A, alpha-haemolysin and other virulence factors

Affiliations

Molecular characterization of Staphylococcus argenteus in Myanmar: identification of novel genotypes/clusters in staphylocoagulase, protein A, alpha-haemolysin and other virulence factors

Meiji Soe Aung et al. J Med Microbiol. 2019 Jan.

Abstract

Purpose: Staphylococcus argenteus is a novel emerging species of coagulase-positive staphylococcus that is genetically closely related to Staphylococcus aureus. To elucidate the molecular differences in the virulence factors (staphylocoagulase, protein A, alpha-haemolysin, enterotoxin-like toxin and staphylokinase) between these staphylococcal species, S. argenteus that had recently been isolated in Myanmar (five nasal isolates and four clinical isolates) were analysed.

Methodology: The nucleotide sequences of the virulence factors were determined by PCR and direct sequencing, followed by phylogenetic analysis by mega6 and multiple alignment by clustalw using the published sequence data for S. aureus and S. argenteus.

Results: Six S. argenteus isolates belonged to MLST sequence type (ST) 2250, while others belonged to ST4625, ST2198 and ST2854. The novel staphylocoagulase (coa) genotype XIV and the novel coa-XI subtype (XId) were identified in an ST2198 isolate and all other isolates, respectively. Among the S. argenteus isolates, the protein A and alpha-haemolysin genes showed high sequence identity (96-98 % and >99 %, respectively), while lower identity was observed between S. argenteus and S. aureus (88-91 % and 86 %, respectively), with both species showing phylogenetically distinct clusters. Similar findings were found for the staphylococcal enterotoxin (SE)-like toxin genes selw, selx and sely. In contrast, the staphylokinase genes were almost identical between these two species. All of the coa-XId isolates had a CRISPR/Cas locus at the site of orfX without having SCCmec, whereas an ST2198 isolate lacked this locus.

Conclusion: The primary virulence factors (staphylocoagulase, protein A andalpha-haemolysin) as well as the SE-like toxins of S. argenteus were genetically discriminated from those of S. aureus, revealing the presence of the novel coa-type/subtype (coa-IXd, XIV) in S. argenteus.

Keywords: CRISPR/Cas; ST; Staphylococcus argenteus; alpha-hemolysin; protein A; staphylocoagulase.

PubMed Disclaimer

MeSH terms

LinkOut - more resources