Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec;2(12):1897-1905.
doi: 10.1038/s41559-018-0714-0. Epub 2018 Nov 12.

Enhanced peak growth of global vegetation and its key mechanisms

Affiliations

Enhanced peak growth of global vegetation and its key mechanisms

Kun Huang et al. Nat Ecol Evol. 2018 Dec.

Abstract

The annual peak growth of vegetation is critical in characterizing the capacity of terrestrial ecosystem productivity and shaping the seasonality of atmospheric CO2 concentrations. The recent greening of global lands suggests an increasing trend of terrestrial vegetation growth, but whether or not the peak growth has been globally enhanced still remains unclear. Here, we use two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in annual peak vegetation growth (that is, GPPmax and NDVImax). We demonstrate that the peak in the growth of global vegetation has been linearly increasing during the past three decades. About 65% of the NDVImax variation is evenly explained by expanding croplands (21%), rising CO2 (22%) and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend is substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrate that croplands have a higher photosynthetic capacity than other vegetation types. The large contribution of CO2 is also supported by a meta-analysis of 466 manipulative experiments and 15 terrestrial biosphere models. Furthermore, we show that the contribution of GPPmax to the change in annual GPP is less in the tropics than in other regions. These multiple lines of evidence reveal an increasing trend in the peak growth of global vegetation. The findings highlight the important roles of agricultural intensification and atmospheric changes in reshaping the seasonality of global vegetation growth.

PubMed Disclaimer

Comment in

  • Global vegetation's CO2 uptake.
    Vicca S. Vicca S. Nat Ecol Evol. 2018 Dec;2(12):1840-1841. doi: 10.1038/s41559-018-0730-0. Nat Ecol Evol. 2018. PMID: 30420744 No abstract available.

Publication types

LinkOut - more resources