"Waltz" of Cell Membrane-Coated Nanoparticles on Lipid Bilayers: Tracking Single Particle Rotation in Ligand-Receptor Binding
- PMID: 30421608
- DOI: 10.1021/acsnano.8b04880
"Waltz" of Cell Membrane-Coated Nanoparticles on Lipid Bilayers: Tracking Single Particle Rotation in Ligand-Receptor Binding
Abstract
Understanding the binding of nanoparticles to receptors on biomembranes is critical to the development and screening of therapeutic materials. A prevailing understanding is that multivalent ligand-receptor binding leads to slower and confined translational motion of nanoparticles. In contrast, we report in this study distinct types of rotational dynamics of nanoparticles during their seemingly similar translational confinements in ligand-receptor binding. Our nanoparticles are fluorescently anisotropic and camouflaged with T cell membranes. As they bind to ligands on planar lipid bilayers, the particles transition from back-and-forth rocking motion to circling and eventually confined circling motion, while "hopping" between translational confinements. Both rotational and translational motions of the nanoparticles become more confined at higher ligand density. The time-dependent changes in particle rotation reveal different stages in the progression of multivalent binding between the cell-membrane coated nanoparticles and their ligands. Our work also demonstrates the promise of using combined rotational and translational single particle tracking to resolve biological interactions that could be "hidden" in translational measurements alone.
Keywords: cell membrane-coated particles; dynamic confinement; ligand−receptor binding; particle rotation; single-particle tracking.
Similar articles
-
Ligand-decoration determines the translational and rotational dynamics of nanoparticles on a lipid bilayer membrane.Phys Chem Chem Phys. 2021 Apr 22;23(15):9158-9165. doi: 10.1039/d1cp00643f. Phys Chem Chem Phys. 2021. PMID: 33885120
-
Three-Dimensional Heterogeneous Structure Formation on a Supported Lipid Bilayer Disclosed by Single-Particle Tracking.Langmuir. 2018 Oct 2;34(39):11857-11865. doi: 10.1021/acs.langmuir.8b01690. Epub 2018 Sep 19. Langmuir. 2018. PMID: 30170491
-
Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations.Nanoscale. 2015 Jan 14;7(2):814-24. doi: 10.1039/c4nr04834b. Nanoscale. 2015. PMID: 25438167 Free PMC article.
-
Wrapping of nanoparticles by membranes.Adv Colloid Interface Sci. 2014 Jun;208:214-24. doi: 10.1016/j.cis.2014.02.012. Epub 2014 Mar 12. Adv Colloid Interface Sci. 2014. PMID: 24703299 Review.
-
Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face?Acc Chem Res. 2007 May;40(5):335-42. doi: 10.1021/ar600012y. Epub 2007 May 3. Acc Chem Res. 2007. PMID: 17474708 Free PMC article. Review.
Cited by
-
Visualizing Single V-ATPase Rotation Using Janus Nanoparticles.bioRxiv [Preprint]. 2024 Aug 22:2024.08.22.609254. doi: 10.1101/2024.08.22.609254. bioRxiv. 2024. Update in: Nano Lett. 2024 Dec 11;24(49):15638-15644. doi: 10.1021/acs.nanolett.4c04109. PMID: 39229122 Free PMC article. Updated. Preprint.
-
Recent Developments of Nanodiamond Quantum Sensors for Biological Applications.Adv Sci (Weinh). 2022 Jul;9(19):e2200059. doi: 10.1002/advs.202200059. Epub 2022 Mar 27. Adv Sci (Weinh). 2022. PMID: 35343101 Free PMC article. Review.
-
Kinetics of phagosome maturation is coupled to their intracellular motility.Commun Biol. 2022 Sep 26;5(1):1014. doi: 10.1038/s42003-022-03988-4. Commun Biol. 2022. PMID: 36163370 Free PMC article.
-
Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse.bioRxiv [Preprint]. 2023 Apr 28:2023.04.25.538287. doi: 10.1101/2023.04.25.538287. bioRxiv. 2023. Update in: Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2306788120. doi: 10.1073/pnas.2306788120. PMID: 37162866 Free PMC article. Updated. Preprint.
-
Toward Chemotactic Supramolecular Nanoparticles: From Autonomous Surface Motion Following Specific Chemical Gradients to Multivalency-Controlled Disassembly.ACS Nano. 2021 Oct 26;15(10):16149-16161. doi: 10.1021/acsnano.1c05000. Epub 2021 Sep 22. ACS Nano. 2021. PMID: 34549951 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials