Plasma Acylcarnitines and Risk of Type 2 Diabetes in a Mediterranean Population at High Cardiovascular Risk
- PMID: 30423132
- PMCID: PMC6435097
- DOI: 10.1210/jc.2018-01000
Plasma Acylcarnitines and Risk of Type 2 Diabetes in a Mediterranean Population at High Cardiovascular Risk
Abstract
Context: The potential associations between acylcarnitine profiles and incidence of type 2 diabetes (T2D) and whether acylcarnitines can be used to improve diabetes prediction remain unclear.
Objective: To evaluate the associations between baseline and 1-year changes in acylcarnitines and their diabetes predictive ability beyond traditional risk factors.
Design, setting, and participants: We designed a case-cohort study within the PREDIMED Study including all incident cases of T2D (n = 251) and 694 randomly selected participants at baseline (follow-up, 3.8 years). Plasma acylcarnitines were measured using a targeted approach by liquid chromatography-tandem mass spectrometry. We tested the associations between baseline and 1-year changes in individual acylcarnitines and T2D risk using weighted Cox regression models. We used elastic net regressions to select acylcarnitines for T2D prediction and compute a weighted score using a cross-validation approach.
Results: An acylcarnitine profile, especially including short- and long-chain acylcarnitines, was significantly associated with a higher risk of T2D independent of traditional risk factors. The relative risks of T2D per SD increment of the predictive model scores were 4.03 (95% CI, 3.00 to 5.42; P < 0.001) for the conventional model and 4.85 (95% CI, 3.65 to 6.45; P < 0.001) for the model including acylcarnitines, with a hazard ratio of 1.33 (95% CI, 1.08 to 1.63; P < 0.001) attributed to the acylcarnitines. Including the acylcarnitines into the model did not significantly improve the area under the receiver operator characteristic curve (0.86 to 0.88, P = 0.61). A 1-year increase in C4OH-carnitine was associated with higher risk of T2D [per SD increment, 1.44 (1.03 to 2.01)].
Conclusions: An acylcarnitine profile, mainly including short- and long-chain acylcarnitines, was significantly associated with higher T2D risk in participants at high cardiovascular risk. The inclusion of acylcarnitines into the model did not significantly improve the T2D prediction C-statistics beyond traditional risk factors, including fasting glucose.
Copyright © 2019 Endocrine Society.
Figures
 
              
              
              
              
                
                
                References
- 
    - International Diabetes Federation IDF Diabetes Atlas. 8th ed.Brussels, Belgium: International Diabetes Federation; 2017.
 
- 
    - Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–326. - PMC - PubMed
 
- 
    - Tai ES, Tan MLS, Stevens RD, Low YL, Muehlbauer MJ, Goh DLM, Ilkayeva OR, Wenner BR, Bain JR, Lee JJ, Lim SC, Khoo CM, Shah SH, Newgard CB. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia. 2010;53(4):757–767. - PMC - PubMed
 
 
        