Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 13;18(1):103.
doi: 10.1186/s12894-018-0417-5.

How to perform the dusting technique for calcium oxalate stone phantoms during Ho:YAG laser lithotripsy

Affiliations

How to perform the dusting technique for calcium oxalate stone phantoms during Ho:YAG laser lithotripsy

Jeong Woo Lee et al. BMC Urol. .

Abstract

Background: To determine the most efficacious setting of Holmium:yttrium-aluminum-garnet (Ho:YAG) laser with a maximum power output of 120 W with in vitro phantom-stone dusting technique.

Methods: A laser was used to treat two 4 × 3 × 3 mm3 sized phantom stones in 5 mL syringes with 1 mm-sized holes at the bottom. According to the pulse width (short 500, middle 750, long pulse 1000 μsec), maximal pulse repetition rates from 50 to 80 Hz were tested with pulse energy of 0.2, 0.4, 0.5, and 0.8 J. Six times of the mean dusting times were measured at each setting. Dusting was performed at continuous firing of the laser until the stones become dusts < 1 mm.

Results: The mean Hounsfield unit of phantom stones was 1309.0 ± 60.8. The laser with long pulse generally showed shorter dusting times than short or middle pulse width. With increasing the pulse energy to 0.5 J, the dusting time decreased. However, the pulse energy of 0.8 J showed longer dusting times than those of 0.5 J. On the post-hoc analysis, the pulse energy of 0.5 J, long pulse width, and the repetition rates of 70 Hz demonstrated significantly shorter dusting times than other settings.

Conclusions: The results suggest that long pulse width with 0.5 J and 70 Hz would be the most efficacious setting for dusting techniques of plaster stone phantoms simulating calcium oxalate stones using the 120 W Ho:YAG laser.

Keywords: Calcium oxalate; Dusting; Energy; Ho:YAG laser; Lithotripsy.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

This paper is not associated with research involving human subjects, human material, or human data. As such, not ethical approval was required.

Consent for publication

None.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a Stone density measured in the computed tomography scan images. b Each cubical stone of 4x3x3 mm3
Fig. 2
Fig. 2
a A 1 mm-sized hole at the bottom of the syringe for fragmented particles to go out. b A laser fiber was positioned 1–2 mm away from the phantom stones when the dusting technique starts. c Irrigation fluid at the height of 40cmH2O to mimic the real practice situation. d Dusts < 1 mm went out of the syringe during laser firing. When the all particles disappear in the syringe, the duration of dusting was checked by a stop-watch
Fig. 3
Fig. 3
Post-hoc analysis to compare the mean dusting time per each setting and across the groups a (0.5 J, a long pulse width, and 70 Hz), b (0.5 J (middle and short pulse widths), c (0.4 and 0.8 J, middle or short pulse width), and d (0.2 J groups)

References

    1. Bader MJ, Eisner B, Porpiglia F, Preminger GM, Tiselius HG. Contemporary management of ureter stones. Eur Urol. 2012;61:764–772. doi: 10.1016/j.eururo.2012.01.009. - DOI - PubMed
    1. Blackmon RL, Irby PB, Fried NM. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt. 2011;16:071403. doi: 10.1117/1.3564884. - DOI - PubMed
    1. Lee SH, Kim TH, Myung SC, et al. Effectiveness of flexible ureteroscopic stone removal for treating ureteral and ipsilateral renal stones: a single-center experience. Korean J Urol. 2013;54:377–382. doi: 10.4111/kju.2013.54.6.377. - DOI - PMC - PubMed
    1. Lee JW, Park J, Lee SB, Son H, Cho SY, Jeong H. Mini-percutaneous nephrolithotomy vs retrograde intrarenal surgery for renal stones larger than 10 mm: a prospective randomized controlled trial. Urology. 2015;86:873–877. doi: 10.1016/j.urology.2015.08.011. - DOI - PubMed
    1. Kumar A, Kumar N, Vasudeva P, Kumar Jha S, Kumar R, Singh H. A prospective, randomized comparison of shock wave lithotripsy, retrograde intrarenal surgery and miniperc for treatment of 1 to 2 cm radiolucent lower calyceal calculi: a single center experience. J Urol. 2015;193:160–164. doi: 10.1016/j.juro.2014.07.088. - DOI - PubMed

MeSH terms

Substances

LinkOut - more resources