Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov;23(11):1-9.
doi: 10.1117/1.JBO.23.11.115003.

Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis

Affiliations
Free article

Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis

Nils Petitdidier et al. J Biomed Opt. 2018 Nov.
Free article

Abstract

Spatially resolved diffuse reflectance spectroscopy (srDRS) is a well-established technique for noninvasive, in vivo characterization of tissue optical properties toward diagnostic applications. srDRS has a potential for depth-resolved analysis of tissue, which is desired in various clinical situations. However, current fiber-based and photodiode-based systems have difficulties achieving this goal due to challenges in sampling the reflectance with a high enough resolution. We introduce a compact, low-cost architecture for srDRS based on the use of a multipixel imaging sensor and light-emitting diodes to achieve lensless diffuse reflectance imaging in contact with the tissue with high spatial resolution. For proof-of-concept, a prototype device, involving a commercially available complementary metal-oxide semiconductor coupled with a fiber-optic plate, was fabricated. Diffuse reflectance profiles were acquired at 645 nm at source-to-detector separations ranging from 480 μm to 4 mm with a resolution of 16.7 μm. Absorption coefficients (μa) and reduced scattering coefficients (μs') of homogeneous tissue-mimicking phantoms were measured with 4.2 ± 3.5 % and 7.0 ± 4.6 % error, respectively. The results obtained confirm the potential of our approach for quantitative characterization of tissue optical properties in contact imaging modality. This study is a first step toward the development of low-cost, wearable devices for skin condition diagnosis in vivo.

Keywords: CMOS sensor; contact imaging; diffuse reflectance; optical properties; tissue spectroscopy; wearable device.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources