Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov:125:109-114.
doi: 10.1016/j.lungcan.2018.09.013. Epub 2018 Sep 17.

CT-based radiomics signature for differentiating solitary granulomatous nodules from solid lung adenocarcinoma

Affiliations

CT-based radiomics signature for differentiating solitary granulomatous nodules from solid lung adenocarcinoma

Xinguan Yang et al. Lung Cancer. 2018 Nov.

Abstract

Objectives: Pulmonary granulomatous nodule (GN) with spiculated or lobulated appearance are indistinguishable from solid lung adenocarcinoma (SADC) based on CT morphological features, and partial false-positive findings on PET/CT. The objective of this study was to investigate the ability of quantitative CT radiomics for preoperatively differentiating solitary atypical GN from SADC.

Methods: 302 eligible patients (SADC = 209, GN = 93) were evaluated in this retrospective study and were divided into training (n = 211) and validation cohorts (n = 91). Radiomics features were extracted from plain and vein-phase CT images. The L1 regularized logistic regression model was used to identify the optimal radiomics features for construction of a radiomics model in differentiate solitary GN from SADC. The performance of the constructed radiomics model was evaluated using the area under curve (AUC) of receiver operating characteristic curve (ROC).

Results: 16.7% (35/209) of SADC were misdiagnosed as GN and 24.7% (23/93) of GN were misdiagnosed as lung cancer before surgery. The AUCs of combined radiomics and clinical risk factors were 0.935, 0.902, and 0.923 in the training cohort of plain radiomics(PR), vein radiomics, and plain and vein radiomics, and were 0.817, 0835, and 0.841 in the validation cohort of three models, respectively. PR combined with clinical risk factors (PRC) performed better than simple radiomics models (p < 0.05). The diagnostic accuracy of PRC in the total cohorts was similar to our radiologists (p ≥ 0.05).

Conclusions: As a noninvasive method, PRC has the ability to identify SADC and GN with spiculation or lobulation.

Keywords: Differentiation; Granulomatous nodules; Lung adenocarcinoma; Radiomics; Tomography; X-ray computed.

PubMed Disclaimer

Publication types