Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul:2018:1-4.
doi: 10.1109/EMBC.2018.8512947.

A Molecular Imaging "Skin A Time-resolving Intraoperative Imager for Microscopic Residual Cancer Detection Using Enhanced Upconverting Nanoparticles

A Molecular Imaging "Skin A Time-resolving Intraoperative Imager for Microscopic Residual Cancer Detection Using Enhanced Upconverting Nanoparticles

Hossein Najafiaghdam et al. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul.

Abstract

Optimal cancer therapy requires targeted and individualized treatment of all tumor cells, including both gross and microscopic disease. Intraoperatively hard to visualize and often left behind, microscopic foci of residual cancer cells significantly increase the risk of cancer recurrence and treatment failure rates. Fluorescently-tagged targeted molecular labels are employed to guide surgery, but conventional fluorescent intraoperative imagers suffer from lack of sensitivity and maneuverability, limiting practicality in small tumor cavities owing to their cumbersome sizes driven by optics. This work does away with conventional lenses and filters and introduces an optics-free molecular imaging "skin" consisting of only a $25\mu \mathrm{m}$ thin CMOS contact imager that synergistically integrates the long emission lifetimes of upconverting nanoparticles (UCNP) combined with upconversion to use a time domain approach to acquire the image coupled with infrared illumination allowing deep tissue penetration and elimination of autofluorescence. Using this strategy, we are able to visualize UCNPs at fluences (W/cm2) compatible with intraoperative use, opening the door to visualize targeted areas with microscopic sensitivity and facilitate residual microscopic disease detection during surgery, and laying the groundwork for precision post-operative radiation.

PubMed Disclaimer

Publication types

LinkOut - more resources