Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul:2018:4464-4467.
doi: 10.1109/EMBC.2018.8513171.

Achieving Ultra-Conformability With Polyimide-Based ECoG Arrays

Achieving Ultra-Conformability With Polyimide-Based ECoG Arrays

Maria Vomero et al. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul.

Abstract

Micro-electrode arrays for electrocorticography (ECoG) represent the best compromise between invasiveness and signal quality, as they are surface devices that still allow high sensitivity recordings. In this work, an assessment of different technical aspects determining the ultimate performance of ultra-conformable polyimide-based μECoG arrays is conducted via a finite element model, impedance spectroscopy measurements and recordings of sensorimotor evoked potentials (SEPs) in rats. The finite element model proves that conformability of thin-film arrays can be achieved with polyimide, a non-stretchable material, by adjusting its thickness according to the curvature of the targeted anatomical area. From the electrochemical characterization of the devices, intrinsic thermal noise of platinum and gold electrodes is estimated to be 3-5 μV. Results show that electrode size and in vitro impedance do not influence the amplitude of the recorded SEPs. However, the use of a reference on-skull (a metal screw), as compared to reference on-array (a metal electrode surrounding the recording area), provides higher-amplitude SEPs. Additionally, the incorporation of a grounded metal shield in the thin-film devices limits crosstalk between tracks and does not compromise the recording capabilities of the arrays.

PubMed Disclaimer

Publication types