Identifying progressive gene network perturbation from single-cell RNA-seq data
- PMID: 30441472
- DOI: 10.1109/EMBC.2018.8513444
Identifying progressive gene network perturbation from single-cell RNA-seq data
Abstract
Identifying the gene regulatory networks that control development or disease is one of the most important problems in biology. Here, we introduce a computational approach, called PIPER (ProgressIve network PERturbation), to identify the perturbed genes that drive differences in the gene regulatory network across different points in a biological progression. PIPER employs algorithms tailor-made for single cell RNA sequencing (scRNA-seq) data to jointly identify gene networks for multiple progressive conditions. It then performs differential network analysis along the identified gene networks to identify master regulators. We demonstrate that PIPER outperforms state-of-the-art alternative methods on simulated data and is able to predict known key regulators of differentiation on real scRNA-Seq datasets.
Similar articles
-
scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.PLoS Comput Biol. 2020 Jul 27;16(7):e1007471. doi: 10.1371/journal.pcbi.1007471. eCollection 2020 Jul. PLoS Comput Biol. 2020. PMID: 32716923 Free PMC article.
-
DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.Brief Bioinform. 2024 May 23;25(4):bbae334. doi: 10.1093/bib/bbae334. Brief Bioinform. 2024. PMID: 38980373 Free PMC article.
-
Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments.Elife. 2020 Jan 27;9:e51254. doi: 10.7554/eLife.51254. Elife. 2020. PMID: 31985403 Free PMC article.
-
An Informative Approach to Single-Cell Sequencing Analysis.Adv Exp Med Biol. 2019;1129:81-96. doi: 10.1007/978-981-13-6037-4_6. Adv Exp Med Biol. 2019. PMID: 30968362 Review.
-
Mapping Transcription Regulatory Networks with ChIP-seq and RNA-seq.Adv Exp Med Biol. 2015;883:119-34. doi: 10.1007/978-3-319-23603-2_7. Adv Exp Med Biol. 2015. PMID: 26621465 Review.
Cited by
-
NJGCG: A node-based joint Gaussian copula graphical model for gene networks inference across multiple states.Comput Struct Biotechnol J. 2024 Aug 22;23:3199-3210. doi: 10.1016/j.csbj.2024.08.010. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 39263209 Free PMC article.
-
SourceSet: A graphical model approach to identify primary genes in perturbed biological pathways.PLoS Comput Biol. 2019 Oct 25;15(10):e1007357. doi: 10.1371/journal.pcbi.1007357. eCollection 2019 Oct. PLoS Comput Biol. 2019. PMID: 31652275 Free PMC article.
-
Identifying and ranking potential driver genes of Alzheimer's disease using multiview evidence aggregation.Bioinformatics. 2019 Jul 15;35(14):i568-i576. doi: 10.1093/bioinformatics/btz365. Bioinformatics. 2019. PMID: 31510680 Free PMC article.
-
Joint learning of multiple gene networks from single-cell gene expression data.Comput Struct Biotechnol J. 2020 Sep 10;18:2583-2595. doi: 10.1016/j.csbj.2020.09.004. eCollection 2020. Comput Struct Biotechnol J. 2020. PMID: 33033579 Free PMC article.
-
Network modeling of single-cell omics data: challenges, opportunities, and progresses.Emerg Top Life Sci. 2019 Aug;3(4):379-398. doi: 10.1042/etls20180176. Epub 2019 Jul 8. Emerg Top Life Sci. 2019. PMID: 32270049 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources