Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov 16;44(Suppl 2):124.
doi: 10.1186/s13052-018-0564-z.

New treatments for the mucopolysaccharidoses: from pathophysiology to therapy

Affiliations
Review

New treatments for the mucopolysaccharidoses: from pathophysiology to therapy

Simona Fecarotta et al. Ital J Pediatr. .

Abstract

Enzyme replacement therapy is currently considered the standard of care for the treatment of mucopolysaccharidoses (MPS) type I, II, VI, and IV. This approach has shown substantial efficacy mainly on somatic symptoms of the patients, but no benefit was found for other clinical manifestations, such as neurological involvement. New strategies are currently being tested to address these limitations, in particular to obtain sufficient therapeutic levels in the brain. Intrathecal delivery of recombinant enzymes or chimeric enzymes represent promising approaches in this respect. Further innovation will likely be introduced by the recent advancements in the knowledge of lysosomal biology and function. It is now clear that the clinical manifestations of MPS are not only the direct effects of storage, but also derive from a cascade of secondary events that lead to dysfunction of several cellular processes and pathways. Some of these pathways may represent novel therapeutic targets and allow for development of novel or adjunctive therapies for these disorders.

Keywords: Autophagy; Blood-brain barrier; Enzyme replacement therapy; Gene therapy; Mucopolysaccharidoses.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The pathology and the clinical manifestations of mucopolysaccharidoses are only in part the direct consequences of the storage of substrates. A new vision of lysosomal disease pathophysiology suggests that secondary and tertiary events, such as activation of cellular pathways, significantly contribute to the occurrence of tissue damage and clinical manifestations
Fig. 2
Fig. 2
Several studies suggest that in mucopolysaccharide storage causes dysfunction of lysosomes and secondary events, such as aberrant activation of signaling pathways, impairment of autophagy, abnormal vesicle and plasma membrane trafficking, etc

Similar articles

Cited by

References

    1. de Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 1955;60:604–617. - PMC - PubMed
    1. Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control Centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–296. doi: 10.1038/nrm3565. - DOI - PMC - PubMed
    1. Clarke LA. Pathogenesis of skeletal and connective tissue involvement in the mucopolysaccharidoses: glycosaminoglycan storage is merely the instigator. Rheumatology (Oxford) 2011;50(Suppl 5):v13–v18. doi: 10.1093/rheumatology/ker395. - DOI - PubMed
    1. Ballabio A, Gieselmann V. Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta. 1793;2009:684–696. - PubMed
    1. Vitner EB, Platt FM, Futerman AH. Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem. 2010;285:20423–20427. doi: 10.1074/jbc.R110.134452. - DOI - PMC - PubMed