Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct 20;15(13):1555-1563.
doi: 10.7150/ijms.27238. eCollection 2018.

The Pivotal Role of Thymus in Atherosclerosis Mediated by Immune and Inflammatory Response

Affiliations
Review

The Pivotal Role of Thymus in Atherosclerosis Mediated by Immune and Inflammatory Response

Xianliang Dai et al. Int J Med Sci. .

Abstract

Atherosclerosis is one kind of chronic inflammatory disease, in which multiple types of immune cells or factors are involved. Data from experimental and clinical studies on atherosclerosis have confirmed the key roles of immune cells and inflammation in such process. The thymus as a key organ in T lymphocyte ontogenesis has an important role in optimizing immune system function throughout the life, and dysfunction of thymus has been proved to be associated with severity of atherosclerosis. Based on previous research, we begin with the hypothesis that low density lipoprotein or cholesterol reduces the expression of the thymus transcription factor Foxn1 via low density lipoprotein receptors on the membrane surface and low density lipoprotein receptor related proteins on the cell surface, which cause the thymus function decline or degradation. The imbalance of T cell subgroups and the decrease of naive T cells due to thymus dysfunction cause the increase or decrease in the secretion of various inflammatory factors, which in turn aggravates or inhibits atherosclerosis progression and cardiovascular events. Hence, thymus may be the pivotal role in coronary heart disease mediated by atherosclerosis and cardiovascular events and it can imply a novel treatment strategy for the clinical management of patients with atherosclerosis in addition to different commercial drugs. Modulation of immune system by inducing thymus function may be a therapeutic approach for the prevention of atherosclerosis. Purpose of this review is to summarize and discuss the recent advances about the impact of thymus function on atherosclerosis by the data from animal or human studies and the potential mechanisms.

Keywords: Foxn1; aging; atherosclerosis; immune; inflammatory; mechanisms; thymus.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
Immune cells including macrophages, T cells and monocyte are involved in the process of blood vessels from normal to atherosclerosis.
Figure 2
Figure 2
The pivotal role of thymus in AS mediated by immune and inflammatory response. Thymus dysfunction leads to the imbalance of T cell subsets and change in secretion of cytokines, thereby aggravating or inhibiting the progression of atherosclerosis, and as well as other cardiovascular events. LRP: Low density lipoprotein receptor-related proteins, LDLR: Low density lipoprotein receptors, APC: Antigen presenting cell, DC: Dendritic cell, Foxn1: Forkhead box N1, Treg: Regulatory T-cell, Th: Helper T cell, Tc: Cytotoxic T cell.

Similar articles

Cited by

References

    1. Xue-Mei L, Jie C, Xuan D. et al. Changes in CD4+CD25+ Tregs in the pathogenesis of atherosclerosis in ApoE-/- mice. Exp Biol Med (Maywood) 2017;242(9):918–25. - PMC - PubMed
    1. Chistiakov DA, Sobenin IA, Orekhov AN. Regulatory T cells in atherosclerosis and strategies to induce the endogenous atheroprotective immune response. Immunol Lett. 2013;151(1-2):10–22. - PubMed
    1. Sasaki N, Yamashita T, Takeda M, Hirata K. Regulatory T cells in atherogenesis. J Atheroscler Thromb. 2012;19(6):503–15. - PubMed
    1. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*) Annu Rev Immunol. 2009;27:165–97. - PMC - PubMed
    1. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6(7):508–19. - PubMed