Liquid-liquid phase separation in artificial cells
- PMID: 30443328
- PMCID: PMC6227770
- DOI: 10.1098/rsfs.2018.0032
Liquid-liquid phase separation in artificial cells
Abstract
Liquid-liquid phase separation (LLPS) in biology is a recently appreciated means of intracellular compartmentalization. Because the mechanisms driving phase separations are grounded in physical interactions, they can be recreated within less complex systems consisting of only a few simple components, to serve as artificial microcompartments. Within these simple systems, the effect of compartmentalization and microenvironments upon biological reactions and processes can be studied. This review will explore several approaches to incorporating LLPS as artificial cytoplasms and in artificial cells, including both segregative and associative phase separation.
Keywords: aqueous two-phase system; coacervate; droplet; synthetic cytoplasm.
Conflict of interest statement
We declare we have no competing interests.
Figures







Similar articles
-
Alternating Binary Droplets-Based Protocell Networks Driven by Heterogeneous Liquid-Liquid Phase Separation.Angew Chem Int Ed Engl. 2025 May;64(21):e202422175. doi: 10.1002/anie.202422175. Epub 2025 Mar 13. Angew Chem Int Ed Engl. 2025. PMID: 40052701
-
Exploring New Horizons in Liquid Compartmentalization via Microfluidics.Biomacromolecules. 2021 May 10;22(5):1759-1769. doi: 10.1021/acs.biomac.0c01796. Epub 2021 Apr 9. Biomacromolecules. 2021. PMID: 33835788 Free PMC article.
-
Regulating Biocondensates within Synthetic Cells via Segregative Phase Separation.ACS Nano. 2025 Jun 10;19(22):20550-20563. doi: 10.1021/acsnano.4c18971. Epub 2025 Apr 28. ACS Nano. 2025. PMID: 40293809 Free PMC article.
-
Liquid-Liquid Phase Separation in Crowded Environments.Int J Mol Sci. 2020 Aug 17;21(16):5908. doi: 10.3390/ijms21165908. Int J Mol Sci. 2020. PMID: 32824618 Free PMC article. Review.
-
Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications.Chemistry. 2019 Oct 11;25(57):13049-13069. doi: 10.1002/chem.201902210. Epub 2019 Aug 22. Chemistry. 2019. PMID: 31237369 Review.
Cited by
-
Minimal Peptide Sequences That Undergo Liquid-Liquid Phase Separation via Self-Coacervation or Complex Coacervation with ATP.Biomacromolecules. 2024 Aug 12;25(8):5321-5331. doi: 10.1021/acs.biomac.4c00738. Epub 2024 Jul 27. Biomacromolecules. 2024. PMID: 39066731 Free PMC article.
-
Self-growing protocell models in aqueous two-phase system induced by internal DNA replication reaction.Nat Commun. 2025 Feb 26;16(1):1522. doi: 10.1038/s41467-025-56172-7. Nat Commun. 2025. PMID: 40011432 Free PMC article.
-
Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets.J Am Chem Soc. 2022 Mar 9;144(9):3855-3862. doi: 10.1021/jacs.1c11414. Epub 2022 Feb 22. J Am Chem Soc. 2022. PMID: 35192333 Free PMC article.
-
Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.Proc Natl Acad Sci U S A. 2021 Dec 21;118(51):e2109967118. doi: 10.1073/pnas.2109967118. Proc Natl Acad Sci U S A. 2021. PMID: 34916288 Free PMC article.
-
Protocell Effects on RNA Folding, Function, and Evolution.Acc Chem Res. 2024 Aug 6;57(15):2058-2066. doi: 10.1021/acs.accounts.4c00174. Epub 2024 Jul 15. Acc Chem Res. 2024. PMID: 39005057 Free PMC article.
References
LinkOut - more resources
Full Text Sources