Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;165(1):102-112.
doi: 10.1099/mic.0.000743. Epub 2018 Nov 16.

Post-transcriptional regulation of cholera toxin production in Vibrio cholerae by the stringent response regulator DksA

Affiliations
Free article

Post-transcriptional regulation of cholera toxin production in Vibrio cholerae by the stringent response regulator DksA

Pallabi Basu et al. Microbiology (Reading). 2019 Jan.
Free article

Abstract

Expression of cholera toxin (CT), the principal virulence factor of the cholera pathogen Vibrio cholerae, is positively modulated by the RNA polymerase binding unusual transcription factor DksA (DksAVc) of the stringent response pathway. Here we report that even though CT (encoded by the genes ctxAB) production is downregulated in the V. cholerae ΔdksA (ΔdksAVc) mutant, the expression of the ctxA gene as well as the genes encoding different virulence regulators, namely, AphA, TcpP and ToxT, were also upregulated. Since DksAVc positively regulates HapR, a known negative regulator of CT production, the increased expression of different virulence genes in ΔdksAVc was due most probably to downregulation of HapR. There was no secretion/transport-related defect in ΔdksAVc cells because whole cell lysates of the mutant showed a negligible amount of CT accumulation similar to WT cells. To understand further, the hapR gene was deleted in ΔdksAVc background, however, the double mutant failed to rescue the CT production defect suggesting strongly towards post-transcriptional/translational regulation by DksAVc. This hypothesis was further confirmed when the site-directed mutagenesis of each or both of the conserved aspartic acid residues at positions 68 and 71 of DksAVc, which are essential for transcription initiation during the stringent response, had no effect in the regulation of CT expression. Interestingly, progressive deletion analysis indicated that the C4-type Zn finger motif present in the C-terminus of DksAVc is essential for optimal CT production. Since this motif plays important roles in DNA/RNA binding, the present study indicates a novel complex post-transcriptional regulation of CT expression by DksAVc.

Keywords: Vibrio cholerae; cholera toxin; dksA; hapR; post-transcriptional regulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources