Towards a molecular basis of ubiquitin signaling: A dual-scale simulation study of ubiquitin dimers
- PMID: 30444864
- PMCID: PMC6268000
- DOI: 10.1371/journal.pcbi.1006589
Towards a molecular basis of ubiquitin signaling: A dual-scale simulation study of ubiquitin dimers
Abstract
Covalent modification of proteins by ubiquitin or ubiquitin chains is one of the most prevalent post-translational modifications in eukaryotes. Different types of ubiquitin chains are assumed to selectively signal respectively modified proteins for different fates. In support of this hypothesis, structural studies have shown that the eight possible ubiquitin dimers adopt different conformations. However, at least in some cases, these structures cannot sufficiently explain the molecular basis of the selective signaling mechanisms. This indicates that the available structures represent only a few distinct conformations within the entire conformational space adopted by a ubiquitin dimer. Here, molecular simulations on different levels of resolution can complement the structural information. We have combined exhaustive coarse grained and atomistic simulations of all eight possible ubiquitin dimers with a suitable dimensionality reduction technique and a new method to characterize protein-protein interfaces and the conformational landscape of protein conjugates. We found that ubiquitin dimers exhibit characteristic linkage type-dependent properties in solution, such as interface stability and the character of contacts between the subunits, which can be directly correlated with experimentally observed linkage-specific properties.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures






Similar articles
-
Machine Learning Driven Analysis of Large Scale Simulations Reveals Conformational Characteristics of Ubiquitin Chains.J Chem Theory Comput. 2020 May 12;16(5):3205-3220. doi: 10.1021/acs.jctc.0c00045. Epub 2020 Apr 7. J Chem Theory Comput. 2020. PMID: 32196332
-
Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics.Mol Biosyst. 2011 Dec;7(12):3223-33. doi: 10.1039/c1mb05185g. Epub 2011 Sep 28. Mol Biosyst. 2011. PMID: 21956701
-
Resolving the conformational dynamics of ErbB growth factor receptor dimers.J Struct Biol. 2019 Aug 1;207(2):225-233. doi: 10.1016/j.jsb.2019.05.013. Epub 2019 Jun 1. J Struct Biol. 2019. PMID: 31163211
-
Unraveling the complexity of ubiquitin signaling.ACS Chem Biol. 2012 Jan 20;7(1):52-63. doi: 10.1021/cb2004059. Epub 2012 Jan 11. ACS Chem Biol. 2012. PMID: 22196026 Free PMC article. Review.
-
Ubiquitin-A structural perspective.Mol Cell. 2025 Jan 16;85(2):323-346. doi: 10.1016/j.molcel.2024.12.015. Epub 2025 Jan 16. Mol Cell. 2025. PMID: 39824171 Review.
Cited by
-
An integrated approach of NMR experiments and MD simulations visualizes structural dynamics of a cyclic multi-domain protein.Protein Sci. 2023 Oct;32(10):e4768. doi: 10.1002/pro.4768. Protein Sci. 2023. PMID: 37632150 Free PMC article.
-
Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution.PLoS Comput Biol. 2020 Apr 27;16(4):e1007870. doi: 10.1371/journal.pcbi.1007870. eCollection 2020 Apr. PLoS Comput Biol. 2020. PMID: 32339173 Free PMC article.
-
NMR Characterization of Conformational Interconversions of Lys48-Linked Ubiquitin Chains.Int J Mol Sci. 2020 Jul 28;21(15):5351. doi: 10.3390/ijms21155351. Int J Mol Sci. 2020. PMID: 32731397 Free PMC article.
-
Conformational and functional characterization of artificially conjugated non-canonical ubiquitin dimers.Sci Rep. 2019 Dec 27;9(1):19991. doi: 10.1038/s41598-019-56458-z. Sci Rep. 2019. PMID: 31882959 Free PMC article.
-
Solution structure of the HOIL-1L NZF domain reveals a conformational switch regulating linear ubiquitin affinity.J Biol Chem. 2023 Sep;299(9):105165. doi: 10.1016/j.jbc.2023.105165. Epub 2023 Aug 16. J Biol Chem. 2023. PMID: 37595872 Free PMC article.
References
-
- Hershko A, Ciechanover A. The Ubiquitin System. Annu Rev Biochem. 1998;67(1):425–479. 10.1146/annurev.biochem.67.1.425 - DOI - PubMed
-
- Kravtsova-Ivantsiv Y, Sommer T, Ciechanover A. The Lysine48-Based Polyubiquitin Chain Proteasomal Signal: Not a Single Child Anymore. Angew Chem Int Ed. 2012;52(1):192–198. 10.1002/anie.201205656 - DOI - PubMed
-
- Swatek KN, Komander D. Ubiquitin Modifications. Cell Res. 2016;26(4):399–422. 10.1038/cr.2016.39 - DOI - PMC - PubMed
-
- Komander D, Rape M. The Ubiquitin Code. Annu Rev Biochem. 2012;81(1):203–229. 10.1146/annurev-biochem-060310-170328 - DOI - PubMed
-
- Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding Domains—from Structures to Functions. Nat Rev Mol Cell Biol. 2009;10(10):659–671. 10.1038/nrm2767 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources