Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 1;95(1).
doi: 10.1093/femsec/fiy223.

Wood decomposition in aquatic and terrestrial ecosystems in the tropics: contrasting biotic and abiotic processes

Affiliations

Wood decomposition in aquatic and terrestrial ecosystems in the tropics: contrasting biotic and abiotic processes

Jennifer M Jones et al. FEMS Microbiol Ecol. .

Abstract

Wood decomposition, a critical process in carbon and nutrient cycles, is influenced by environmental conditions, decomposer communities and substrate composition. While these factors differ between land and stream habitats, across-habitat comparisons of wood decay processes are rare, limiting our ability to evaluate the context- dependency of the drivers of decay. Here we tracked wood decomposition of three tree species placed in stream and terrestrial habitats in a lowland tropical forest in Panama. At 3 and 11 months we measured mass loss, wood nitrogen and wood polymer concentrations, and sampled wood-associated fungal and bacterial communities. After 11 months of decay we found that mass loss occurred 9% faster in streams than on land, but loss of cellulose, hemicellulose and lignin did not differ between habitats. We also observed large differences in microbial decomposer communities between habitats. Overall, we found faster mass loss of wood in water, but no differences in biotic decay processes between habitats despite distinct microbial communities in streams and on land. Our research challenges the assumption that wood decays relatively slowly in water reflecting unfavorable environmental conditions and a limited capacity of aquatic microbial communities to effectively degrade wood polymers.

PubMed Disclaimer

Publication types