Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 16;8(1):111.
doi: 10.1186/s13613-018-0457-8.

Inflammatory and coagulatory parameters linked to survival in critically ill children with sepsis

Affiliations

Inflammatory and coagulatory parameters linked to survival in critically ill children with sepsis

Christian Niederwanger et al. Ann Intensive Care. .

Abstract

Background: Sepsis is associated with a deflection of inflammatory and coagulative parameters, since some clotting factors are known to be involved in the host's defense against infection and inflammation. These parameters could play a crucial role in the course of sepsis and be used as prognostic markers in critically ill children.

Methods: A total of 250 critically ill pediatric patients diagnosed with sepsis were retrospectively analyzed to identify routinely measured predictors for in-hospital mortality at the peak level of C-reactive protein. Those parameters entered multivariate logistic regression analysis as well as a decision tree for survival.

Results: Multivariate logistic regression analysis revealed fibrinogen, platelets and activated partial thromboplastin time (aPTT) at the peak level of C-reactive protein to be predictors for survival (p = 0.03, p = 0.01 and p = 0.02, respectively). An increase in fibrinogen and platelets is linked to survival, whereas an aPTT prolongation is associated with higher mortality; adjusted odds ratios (95% CI) for an increase of 100 mg/dl in fibrinogen are 1.35 (1.04-1.82) per 50 G/l platelets 1.94 (1.3-3.29) and 0.83 (0.69-0.96) for an aPTT prolongation of 10 s. Decision tree analysis shows that a fibrinogen level below 192 mg/dl (90.9% vs. 13% mortality) is most distinctive in non-survivors.

Conclusions: High levels of fibrinogen and platelets as well as a non-overshooting aPTT are associated with a higher survival rate in pediatric patients with diagnosed sepsis. In particular, hypofibrinogenemia is distinctive for a high mortality rate in septic critically ill children.

Keywords: Children; Coagulation; Fibrinogen; Inflammation; Platelets; Sepsis; Survival.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Progression of C-reactive protein and measured coagulation parameters. Depicted are medians with 95% CIs of the measured parameters for survivors (blue) and non-survivors (red) from 3 days prior to (d-3 to d-1) until 3 days after (d1 to d3) C-reactive protein peaked (d0). Asterisks indicate significant differences between survivors and non-survivors at the respective time point; n1 is the number of available measurements for survivors and n2 for non-survivors
Fig. 2
Fig. 2
Progression of measured coagulation parameters. Depicted are medians with 95% CIs of the measured parameters for survivors (blue) and non-survivors (red) from 3 days prior to (d-3 to d-1) until 3 days after (d1 to d3) C-reactive protein peaked (d0). Asterisks indicate significant differences between survivors and non-survivors at the respective time point; n1 is the number of available measurements for survivors and n2 for non-survivors
Fig. 3
Fig. 3
Adjusted odds ratios (95% CI) for survival retrieved from logistic regression. For an odds ratio greater than 1, an increase in the parameter decreases the mortality risk
Fig. 4
Fig. 4
Decision tree for survival. The classification tree was fitted with univariate predictors at the peak of C-reactive protein and age
Fig. 5
Fig. 5
Survival by age-adjusted hypofibrinogenemia, normal fibrinogenemia and hyperfibrinogenemia. The classification is based on the age-adjusted norm value ranges

Similar articles

Cited by

References

    1. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8. doi: 10.1097/01.PCC.0000149131.72248.E6. - DOI - PubMed
    1. Randolph AG, McCulloh RJ. Pediatric sepsis: important considerations for diagnosing and managing severe infections in infants, children, and adolescents. Virulence. 2014;5(1):179–189. doi: 10.4161/viru.27045. - DOI - PMC - PubMed
    1. Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis*. Pediatr Crit Care Med. 2013;14(7):686–693. doi: 10.1097/PCC.0b013e3182917fad. - DOI - PubMed
    1. Sokou R, Giallouros G, Konstantinidi A, Pantavou K, Nikolopoulos G, Bonovas S, et al. Thromboelastometry for diagnosis of neonatal sepsis-associated coagulopathy: an observational study. Eur J Pediatr. 2018;177(3):355–362. doi: 10.1007/s00431-017-3072-z. - DOI - PubMed
    1. van der Poll T, van Deventer SJ. Cytokines and anticytokines in the pathogenesis of sepsis. Infect Dis Clin North Am. 1999;13(2):413–426. doi: 10.1016/S0891-5520(05)70083-0. - DOI - PubMed