Diabetic retinopathy detection and classification using hybrid feature set
- PMID: 30447130
- DOI: 10.1002/jemt.23063
Diabetic retinopathy detection and classification using hybrid feature set
Abstract
Complicated stages of diabetes are the major cause of Diabetic Retinopathy (DR) and no symptoms appear at the initial stage of DR. At the early stage diagnosis of DR, screening and treatment may reduce vision harm. In this work, an automated technique is applied for detection and classification of DR. A local contrast enhancement method is used on grayscale images to enhance the region of interest. An adaptive threshold method with mathematical morphology is used for the accurate lesions region segmentation. After that, the geometrical and statistical features are fused for better classification. The proposed method is validated on DIARETDB1, E-ophtha, Messidor, and local data sets with different metrics such as area under the curve (AUC) and accuracy (ACC).
Keywords: adaptive threshold; hybrid feature set; local contrast enhancement; mathematical morphology; retinal lesions.
© 2018 Wiley Periodicals, Inc.
Similar articles
-
Automated Identification of Diabetic Retinopathy Using Deep Learning.Ophthalmology. 2017 Jul;124(7):962-969. doi: 10.1016/j.ophtha.2017.02.008. Epub 2017 Mar 27. Ophthalmology. 2017. PMID: 28359545
-
[Method of fast and automated detection of diabetic retinopathy based on mathematical morphology].Guang Pu Xue Yu Guang Pu Fen Xi. 2012 Mar;32(3):760-4. Guang Pu Xue Yu Guang Pu Fen Xi. 2012. PMID: 22582648 Chinese.
-
Points of interest and visual dictionaries for automatic retinal lesion detection.IEEE Trans Biomed Eng. 2012 Aug;59(8):2244-53. doi: 10.1109/TBME.2012.2201717. Epub 2012 May 30. IEEE Trans Biomed Eng. 2012. PMID: 22665502
-
A review on exudates detection methods for diabetic retinopathy.Biomed Pharmacother. 2018 Jan;97:1454-1460. doi: 10.1016/j.biopha.2017.11.009. Epub 2017 Dec 14. Biomed Pharmacother. 2018. PMID: 29156536 Review.
-
Automated detection of diabetic retinopathy in retinal images.Indian J Ophthalmol. 2016 Jan;64(1):26-32. doi: 10.4103/0301-4738.178140. Indian J Ophthalmol. 2016. PMID: 26953020 Free PMC article. Review.
Cited by
-
Optimized hybrid machine learning approach for smartphone based diabetic retinopathy detection.Multimed Tools Appl. 2022;81(10):14475-14501. doi: 10.1007/s11042-022-12103-y. Epub 2022 Feb 25. Multimed Tools Appl. 2022. PMID: 35233182 Free PMC article.
-
Recognition of Knee Osteoarthritis (KOA) Using YOLOv2 and Classification Based on Convolutional Neural Network.Life (Basel). 2022 Jul 27;12(8):1126. doi: 10.3390/life12081126. Life (Basel). 2022. PMID: 36013305 Free PMC article.
-
Three-Dimensional Semantic Segmentation of Diabetic Retinopathy Lesions and Grading Using Transfer Learning.J Pers Med. 2022 Sep 5;12(9):1454. doi: 10.3390/jpm12091454. J Pers Med. 2022. PMID: 36143239 Free PMC article.
-
Liver Tumor Localization Based on YOLOv3 and 3D-Semantic Segmentation Using Deep Neural Networks.Diagnostics (Basel). 2022 Mar 27;12(4):823. doi: 10.3390/diagnostics12040823. Diagnostics (Basel). 2022. PMID: 35453870 Free PMC article.
-
Visual impairment prevention by early detection of diabetic retinopathy based on stacked auto-encoder.Sci Rep. 2025 Jan 20;15(1):2554. doi: 10.1038/s41598-025-85752-2. Sci Rep. 2025. PMID: 39833312 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical