Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb:273:350-357.
doi: 10.1016/j.biortech.2018.11.023. Epub 2018 Nov 9.

Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport

Affiliations

Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport

Shuo Wang et al. Bioresour Technol. 2019 Feb.

Abstract

The aim of this work was to study the responses of aerobic granulation process to antibiotics and investigate the antibiotics and antibiotic-resistant bacteria (ARB) removal and transport. Results showed that aerobic granular sludge (AGS) was dominant in the bioreactor at day 45, and the relatively high protein content from tightly bound extracellular polymeric substances (TB-EPS) facilitated aerobic granulation and maintained biomass stabilization. The protein contents in EPS and TB-EPS were positively correlated with relative hydrophobicity, thereby improving the adsorption capacity among hydrophobic particles. The chemical oxygen demand (COD), NH3-N, and total N removal efficiencies were 98.0%, 97.0%, and 92.4%, respectively. Five antibiotics, including kanamycin, tetracycline, ciprofloxacin, ampicillin, and erythromycin, were examined in piggery wastewater, with concentrations up to the concentration range of 29.4-44.1 µg/l, and the total antibiotics removal rate reached up to 88.4% ± 4.5%. A total of 5.2% of the total antibiotics were discharged from bioreactor, and 62.5% of the total antibiotics were degraded, and 32.3% of total antibiotics were adsorbed by aerobic granules. The presence of antibiotics rarely exhibited an influence on AGS formation, and the relatively high microbial activity of aerobic granules was beneficial to antibiotics removal. The ARB removal rate increased up to 89.4% ± 3.3%, but a large amount of ARB was enriched in aerobic granules.

Keywords: Aerobic granular sludge (AGS); Antibiotic-resistant bacteria (ARB); Antibiotics; Biodegradation and adsorption; Piggery wastewater.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources