Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 1;31(2):204-212.
doi: 10.1123/pes.2018-0175. Epub 2018 Nov 18.

Sex-Specific Longitudinal Modeling of Youth Peak Oxygen Uptake

Affiliations
Free article

Sex-Specific Longitudinal Modeling of Youth Peak Oxygen Uptake

Neil Armstrong et al. Pediatr Exerc Sci. .
Free article

Abstract

Purpose: To investigate peak oxygen uptake ( V˙O2 ) in relation to sex, age, body mass, fat-free mass (FFM), maturity, and overweight status. Methods: Multiplicative, allometric models of 10- to 18-year-olds were founded on 1057 determinations of peak V˙O2 supported by anthropometry and estimates of maturity status. Results: Baseline models with body mass controlled for showed age to exert a positive effect on peak V˙O2 , with negative estimates for age2, sex, and a sex-by-age interaction. Sex-specific models showed maturity status to have a positive effect on peak V˙O2 in addition to the effects of age and body mass. Introducing skinfold thicknesses to provide, with body mass, a surrogate for FFM explained maturity effects and yielded a significantly (P < .05) better statistical fit in all models compared with those based on FFM estimated from youth-specific skinfold equations. With girls only, the introduction of overweight, defined by body mass index, resulted in a small but significant (P < .05) negative effect, with an age-by-overweight status interaction. Conclusions: FFM has a powerful influence on peak V˙O2 in both sexes. Interpretation of the development of youth aerobic fitness and its application to health should reflect the sex- and maturity-associated variation in FFM.

Keywords: aerobic fitness; body mass; children; fat-free mass; maturity status; overweight.

PubMed Disclaimer

Publication types